Neurobiology of Depression

Neurobiology of Depression

  1. In 3 or 4 sentences, explain the appropriate drug therapy for a patient who presents with MDD and a history of alcohol abuse. Which drugs are contraindicated, if any, and why? Be specific. What is the timeframe that the patient should see resolution of symptoms?
  2. List 4 predictors of late onset generalized anxiety disorder.
  3. List 4 potential neurobiology causes of psychotic major depression.
  4. An episode of major depression is defined as a period of time lasting at least 2 weeks. List at least 5 symptoms required for the episode to occur. Be specific.
  5. List 3 classes of drugs, with a corresponding example for each class, that precipitate insomnia. Be specific Neurobiology of Depression.

    ORDER A PLAGIARISM – FREE PAPER NOW

Abstract

Current treatments for depression are inadequate for many individuals, and progress in understanding the neurobiology of depression is slow. Several promising hypotheses of depression and antidepressant action have been formulated recently. These hypotheses are based largely on dysregulation of the hypothalamic-pituitary-adrenal axis and hippocampus and implicate corticotropin-releasing factor, glucocorticoids, brain-derived neurotrophic factor, and CREB. Recent work has looked beyond hippocampus to other brain areas that are also likely involved. For example, nucleus accumbens, amygdala, and certain hypothalamic nuclei are critical in regulating motivation, eating, sleeping, energy level, circadian rhythm, and responses to rewarding and aversive stimuli, which are all abnormal in depressed patients. A neurobiologic understanding of depression also requires identification of the genes that make individuals vulnerable or resistant to the syndrome. These advances will fundamentally improve the treatment and prevention of depression Neurobiology of Depression.

Nearly 1 in 5 people will experience a major depressive episode at some point in their lives. In this review, we discuss data describing how genes, psychosocial adversity in childhood, and ongoing or recent psychosocial stress may impact multiple neurobiological systems relevant to major depressive disorder. Major depressive disorder may be caused by the cumulative effects of these 3 factors on the brain.

A major depressive episode is characterized by a low mood or an inability to experience pleasure (anhedonia), or both, for more than 2 weeks, combined with several cognitive and vegetative symptoms and the occurrence of distress or impairment. A diagnosis of major depressive disorder can be made if a person suffers at least 1 such episode (without ever experiencing mania). However, most people with major depressive disorder have multiple episodes. Importantly, several medical illnesses such as diabetes, heart disease, autoimmune disorders and pain are common comorbid diagnoses. The relation between major depressive disorder and these chronic and disabling conditions appears to be bidirectional because one may influence the prognosis of the other Neurobiology of Depression.

Investigations into the neurobiology of major depressive disorder have traditionally focused on the monoamine neurotransmitters serotonin and norepinephrine. The monoamine hypothesis initially posited that depressed individuals are likely to have low levels of these neurotransmitters because various antidepressant drugs acutely increase their levels. However, even though monoaminergic antidepressants are generally used for first-line treatment, they do not exert their clinical benefit immediately and for some people they do not provide any benefit at all. We review the neurobiological research that may help explain this Neurobiology of Depression.