nursing care model

nursing care model

Nursing Care Models Worksheet Identify the model of nursing care that you observed. Be specific about what you observed, who was doing what, when, how and what led you to identify the particular model Review and summarize one scholarly resource (not including your text) related to the nursing care model you observed in the practice setting. Review and summarize one scholarly resource (not including your text) related to a different nursing care model that you observed in the practice setting. Discuss a different nursing care model from step #3 of the

ORDER A PLAGIARISM FREE PAPER NOW

directions and how it could be implemented to improve quality of nursing care, safety and staff satisfaction. Be specific. Summarize this assignment and what you learned about the two nursing care models discussed. References: NURSING CARE MODELS The Nursing Care Models Chamberlain College of Nursing NUR 447: Collaborative Healthcare Name NURSING CARE MODELS Introduction Nursing care models are used to provide a definition and structure to the different impacts of nursing care. The models show just how diverse nursing practice can be. “Nursing practice models have been used to implement resource-intensive strategies with the goal of decreasing expenses and using staff more effectively. Nursing models help to identify and describe nursing care,” (pg. 111, Finkelman, 2016). Nursing care models also help give direction to nursing care (Finkelman, 2016). In different nursing clinical areas, different nursing care models may be used that best suit the needs of that area. Various Methods The Total Care Method Model, also known as the Case Method Model, is considered the oldest of the models (Finkelman, 2016). This method is considered the “model for all care to a patient during a shift,” (pg. 111, Finkelman, 2016). The Total Care Method Model defines that the primary nurse of a patient is responsible for all care during an eight-hour shift (Finkelman, 2016). While this may have been the first care model, it has criticisms as nursing has evolved (Finkelman, 2016). The type of care that is described by this model is seldom achievable by one registered nurse who has multiple patients under her care, sometimes for 12 hours at time (Finkelman, 2016). This model is mostly used by the home-health sector of nursing, where one nurse visits one patient at a time (Finkelman, 2016). Throughout time, even home-health nurses have adapted this method to better fit their needs by having divided the care amongst nurses, aides, physical therapist, and other members of the healthcare team (Finkelman, 2016). The functional nursing model is task-orientated (Finkelman, 2016). The model focuses on what must be done by each nurse and aide. A charge nurse is responsible for an assignment that gives each nurse a role, such a medication administration, and each aide a role, such as taking vital signs (Finkelman, 2016). A drawback to the functional nursing model is that nurses may feel that they are just NURSING CARE MODELS working to perform a job list instead of patient care (Finkelman, 2016). Patients may also feel they are not receiving individualized care (Finkelman, 2016). This method is primarily used in long term care and behavioral health facilities (Finkelman, 2016). The Team Nursing model uses two or three staff members to provide care for all patients during a shift (Finkelman, 2016). It was created during World War 2 to provide a solution to the nursing shortage (Finkelman, 2016). The team consisted of a registered nurse, a licensed practical nurse, and an assistant (Finkelman, 2016). The registered nurse provided all the decision making for the patients in lieu of a physician due to limited team member collaboration (Finkelman, 2016). This method, like the functional nursing model, is focused on task that need to be completed (Finkelman, 2016). The Primary Nursing method uses a registered nurse as the primary nurse who provides all the direct care to the patient (Finkelman, 2016). An associate nurse focuses on the care plans that are developed by the primary nurse and assist the primary nurse (Finkelman, 2016). A downside of primary nursing is the fact it creates a healthcare team solely of registered nurses which may increase cost (Finkelman, 2016). There are several more methods that nursing may rely on. Each comes with benefits and downfalls. Case Management Nursing I work as a Case Manager in a hospital setting that combines utilization review and discharge planning. I help patients receive the assistance they need to have a safe discharge plan. The job requires constant communication with the entire healthcare team while having little to no direct medical patient care to guide patients through the healthcare system (Finkelman, 2016). Case management in the acute setting typically involves registered nurses, social workers, and physicians (Zander, 2017). “Nurse case managers actively participate with their clients to identify and facilitate options and services for meeting individuals’ health needs, with the goal of decreasing fragmentation and duplication of care, and NURSING CARE MODELS enhancing quality, cost-effective clinical outcomes,” (Hall & White, 2006). Case Management places the focus on the patient as a customer of the hospital that needs a safe discharge plan and prevention of readmissions. “Using the case management approach, nurses can optimize client self-care, decrease fragmentation of care, provide quality care across a continuum, enhance clients’ quality of life, decrease length of hospitalization, increase client and staff satisfaction, and promote cost-effective use of scarce resources,” (Zander, 2017). The Case Management Model With case management nursing, the focus of the patient care is set on coordinating care instead of giving physical care to the patient (Finkelman, 2016). “The case management model is based on the assumption that patients with complex health problems, catastrophic health situations, and high-cost medical conditions need assistance in using the healthcare system effectively, and a case manager can help patients with these needs,” (pg. 113, Finkelman, 2016). Case managers have many different roles at different healthcare organizations to best meet the needs of the patients (Finkelman, 2016). The functional model of the Case Management model includes both utilization review and discharge planning (Zander, 2017). This most accurately reflects the model that is used at my job. A year ago, my employer made the decision to combine the case management department and the unitization review department. This model is typically used to reduce cost and to downsize the department (Zander, 2017). “The role of the new hospital case manager position is often ill defined, the nature of the department’s functions is not clearly articulated, and relationships with other disciplines are often confusing,” (Zander, 2017). With this model, the Case Management nurse performs two separate functions: utilization review and discharge planning (Zander, 2017). Utilization review ensures the appropriate documentation is charted to ensure the quality of patient care (Is utilization review the career for you, 2017). With the combination, the staff have the responsibilities of two separate full-time jobs. This can NURSING CARE MODELS lead to confusion with other employees of the organization, such as physicians as to what a case managers role is (Zander, 2017). “Several healthcare professional organizations and experts have defined case management; however, there clearly is no universally accepted definition for case management,” (Finkelman, 2016). Conclusion Nursing care models should combine responsibility, autonomy, and accountability to serve its purpose (Finkelman, 2016). The nursing models define and give a purpose to the nursing role at each individual job and facility (Finkelman, 2016). As a nurse, it is important to understand the what the nursing care models are to best understand how to fulfill that role (Zander, 2017). “Nursing models of care are developed to support or enhance professional practice,” (pg. 111. Finkelman, 2016). NURSING CARE MODELS References Finkelman, A. (2016). Leadership and Management for Nurses: Core Competencies for Quality Care, 3rd Edition. [Vitalsource]. Is utilization review the career for you? (2017, May 20). Retrieved from https://www.americannursetoday.com/utilization-review-career/ White, P., & Hall, M. E. (2006, April). Mapping the literature of case management nursing. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1463029/ Zander, K. S. (2017). Case management models: Best practices for health systems and ACOs. Brentwood, TN: HCPro. doi:https://hcmarketplace.com/aitdownloadablefiles/download/aitfile/aitfile_id/1942.pdf
Purchase answer to see full attachment

MSN Critique of quantitative and qualitative articles

MSN Critique of quantitative and qualitative articles

2 3 Quick Guide to Bivariate Statistical Tests 4 5 6 Acquisitions Editor: Christina Burns Product Development Editor: Katherine Burland Editorial Assistant: Cassie Berube Marketing Manager: Dean Karampelas Production Project

ORDER A PLAGIARISM FREE PAPER NOW

Manager: Cynthia Rudy Design Coordinator: Joan Wendt Manufacturing Coordinator: Karin Duffield Prepress Vendor: Absolute Service, Inc. Tenth edition Copyright © 2017 Wolters Kluwer. Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins. Copyright © 2008, 2004, 1999 by Lippincott Williams & Wilkins. Copyright © 1995, 1991, 1987, 1983, 1978 by J. B. Lippincott Company. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Wolters Kluwer at Two Commerce Square, 2001 Market Street, Philadelphia, PA 19103, via email at permissions@lww.com, or via our website at lww.com (products and services). 987654321 Printed in China Library of Congress Cataloging-in-Publication Data Polit, Denise F., author. Nursing research : generating and assessing evidence for nursing practice / Denise F. Polit, Cheryl Tatano Beck. — Tenth edition. p. ; cm. Includes bibliographical references and index. ISBN 978-1-4963-0023-2 I. Beck, Cheryl Tatano, author. II. Title. [DNLM: 1. Nursing Research—methods. WY 20.5] RT81.5 610.73072—dc23 7 2015033543 This work is provided “as is,” and the publisher disclaims any and all warranties, express or implied, including any warranties as to accuracy, comprehensiveness, or currency of the content of this work. This work is no substitute for individual patient assessment based on healthcare professionals’ examination of each patient and consideration of, among other things, age, weight, gender, current or prior medical conditions, medication history, laboratory data, and other factors unique to the patient. The publisher does not provide medical advice or guidance, and this work is merely a reference tool. Healthcare professionals, and not the publisher, are solely responsible for the use of this work including all medical judgments and for any resulting diagnosis and treatments. Given continuous, rapid advances in medical science and health information, independent professional verification of medical diagnoses, indications, appropriate pharmaceutical selections and dosages, and treatment options should be made and healthcare professionals should consult a variety of sources. When prescribing medication, healthcare professionals are advised to consult the product information sheet (the manufacturer’s package insert) accompanying each drug to verify, among other things, conditions of use, warnings, and side effects and identify any changes in dosage schedule or contraindications, particularly if the medication to be administered is new, infrequently used, or has a narrow therapeutic range. To the maximum extent permitted under applicable law, no responsibility is assumed by the publisher for any injury and/or damage to persons or property, as a matter of products liability, negligence law or otherwise, or from any reference to or use by any person of this work. LWW.com 8 TO Our Beloved Family: Our Husbands, Our Children (Spouses/Fiancés), and Our Grandchildren Husbands: Alan Janosy and Chuck Beck Children: Alex (Maryanna), Alaine (Jeff), Lauren (Vadim), and Norah (Chris); and Curt and Lisa Grandchildren: Cormac, Julia, Maren, and Ronan 9 Acknowledgments This 10th edition, like the previous nine editions, depended on the contribution of dozens of people. Many faculty and students who used the text have made invaluable suggestions for its improvement, and to all of you we are very grateful. In addition to all those who assisted us during the past 35 years with the earlier editions, the following individuals deserve special mention. We would like to acknowledge the comments of reviewers of the previous edition of this book, anonymous to us initially, whose feedback influenced our revisions. Faculty at Griffith University in Australia made useful suggestions and also inspired the inclusion of some new content. Valori Banfi, reference librarian at the University of Connecticut, provided ongoing assistance. Dr. Deborah Dillon McDonald was extraordinarily generous in giving us access to her NINR grant application and related material for the Resource Manual. We also extend our thanks to those who helped to turn the manuscript into a finished product. The staff at Wolters Kluwer has been of great assistance to us over the years. We are indebted to Christina Burns, Kate Burland, Cynthia Rudy, and all the others behind the scenes for their fine contributions. Finally, we thank our family and friends. Our husbands Alan and Chuck have become accustomed to our demanding schedules, but we recognize that their support involves a lot of patience and many sacrifices. 10 Reviewers Ellise D. Adams, PhD, CNM 11 Associate Professor The University of Alabama in Huntsville Huntsville, Alabama Jennifer Bellot, PhD, RN, MHSA Associate Professor and Director, DNP Program Thomas Jefferson University Philadelphia, Pennsylvania Kathleen D. Black, PhD, RNC Assistant Professor, Jefferson College of Nursing Thomas Jefferson University Philadelphia, Pennsylvania Dee Campbell, PhD, APRN, NE-BC, CNL Professor, Graduate Department Felician College, School of Nursing Lodi, New Jersey Patricia Cannistraci, DNS, RN, CNE 12 Assistant Dean 13 Excelsior College Albany, New York Julie L. Daniels, DNP, CNM 14 Assistant Professor Frontier Nursing University Hyden, Kentucky Rebecca Fountain, PhD, RN 15 Associate Professor University of Texas at Tyler Tyler, Texas Teresa S. Johnson, PhD, RN Associate Professor, College of Nursing University of Wisconsin—Milwaukee Milwaukee, Wisconsin Jacqueline Jones, PhD, RN, FAAN Associate Professor, College of Nursing University of Colorado, Anschutz Medical Campus Aurora, Colorado Mary Lopez, PhD, RN Associate Dean, Research Western University of Health Sciences Pomona, California Audra Malone, DNP, FNP-BC 16 Assistant Professor Frontier Nursing University Hyden, Kentucky Sharon R. Rainer, PhD, CRNP Assistant Professor, Jefferson College of Nursing Thomas Jefferson University Philadelphia, Pennsylvania Maria A. Revell, PhD, RN 17 Professor of Nursing Middle Tennessee State University Murfreesboro, Tennessee Stephanie Vaughn, PhD, RN, CRRN Interim Director, School of Nursing California State University, Fullerton Fullerton, California 18 Preface Research methodology is not a static enterprise. Even after writing nine editions of this book, we continue to draw inspiration and new material from groundbreaking advances in research methods and in nurse researchers’ use of those methods. It is exciting and uplifting to share many of those advances in this new edition. We expect that many of the new methodologic and technologic advances will be translated into powerful evidence for nursing practice. Five years ago, we considered the ninth edition as a watershed edition of a classic textbook. We are persuaded, however, that this 10th edition is even better. We have retained many features that made this book a classic textbook and resource, including its focus on research as a support for evidence-based nursing, but have introduced important innovations that will help to shape the future of nursing research. N E W TO T H I S E D I T I O N New Chapters We have added two new chapters on “cutting-edge” topics that are not well covered in any major research methods textbook, regardless of discipline. The first is a chapter on an issue of critical importance to health professionals and yet inadequately addressed in the nursing literature: the clinical significance of research findings. In Chapter 20, we discuss various conceptualizations of clinical significance and present methods of operationalizing those conceptualizations so that clinical significance can be assessed at both the individual and group level. We believe that this is a “must-read” chapter for nurses whose research is designed to inform clinical practice. The second new chapter in this edition concerns the design and conduct of pilot studies. In recent years, experts have written at length about the poor quality of many pilot studies. Chapter 28 provides guidance on how to develop pilot study objectives and draw conclusions about the appropriate next step—that is, whether to proceed to a full-scale study, make major revisions, or 19 abandon the project. This chapter is included in Part 5 of this book, which is devoted to mixed methods research, because pilots can benefit from both qualitative and quantitative evidence. New Content Throughout the book, we have included material on methodologic innovations that have arisen in nursing, medicine, and the social sciences during the past 4 to 5 years. The many additions and changes are too numerous to describe here, but a few deserve special mention. In particular, we have totally revised the chapters on measurement (Chapter 14) and scale development (Chapter 15) to reflect emerging ideas about key measurement properties and the assessment of newly developed instruments. The inclusion of two new chapters made it challenging to keep the textbook to a manageable length. Our solution was to move some content in the ninth edition to supplements that are available online. In fact, every chapter has an online supplement, which gave us the opportunity to add a considerable amount of new content. For example, one supplement is devoted to evidence-based methods to recruit and retain study participants. Other supplements include a description of various randomization methods, an overview of item response theory, guidance on wording proposals to conduct pilot studies, and a discussion of quality improvement studies. Following is a complete list of the supplements for the 31 chapters of this textbook: 1. The History of Nursing Research 2. Evaluating Clinical Practice Guidelines—AGREE II 3. Deductive and Inductive Reasoning 4. Complex Relationships and Hypotheses 5. Literature Review Matrices 6. Prominent Conceptual Models of Nursing Used by Nurse Researchers, and a Guide to Middle-Range Theories 7. Historical Background on Unethical Research Conduct 8. Research Control 9. Randomization Strategies 10. The RE-AIM Framework 11. Other Specific Types of Research 12. Sample Recruitment and Retention 13. Other Types of Structured Self-Reports 14. Cross-Cultural Validity and the Adaptation/Translation of Measures 15. Overview of Item Response Theory 16. SPSS Analysis of Descriptive Statistics 17. SPSS Analysis of Inferential Statistics 18. SPSS Analysis and Multivariate Statistics 19. Some Preliminary Steps in Quantitative Analysis Using SPSS 20. Clinical Significance Assessment with the Jacobson-Truax Approach 21. Historical Nursing Research 22. Generalizability and Qualitative Research 23. Additional Types of Unstructured Self-Reports 24. Transcribing Qualitative Data 25. Whittemore and Colleagues’ Framework of Quality Criteria in Qualitative Research 26. Converting Quantitative and Qualitative Data 27. 20 Complex Intervention Development: Exploratory Questions 28. Examples of Various Pilot Study Objectives 29. Publication Bias in Meta-Analyses 30. Tips for Publishing Reports on Pilot Intervention Studies 31. Proposals for Pilot Intervention Studies Another new feature of this edition concerns our interest in readers’ access to references we cited. To the extent possible, the studies we have chosen as examples of particular research methods are published as openaccess articles. These studies are identified with an asterisk in the reference list at the end of each chapter, and a link to the article is included in the Toolkit section of the Resource Manual. We hope that these revisions will help users of this book to maximize their learning experience. O R G A N I Z AT I O N O F T H E T E X T The content of this edition is organized into six main parts. • Part I—Foundations of Nursing Research and Evidence-Based Practice introduces fundamental concepts in nursing research. Chapter 1 briefly summarizes the history and future of nursing research, discusses the philosophical underpinnings of qualitative research versus quantitative research, and describes major purposes of nursing research. Chapter 2 offers guidance on utilizing research to build an evidence-based practice. Chapter 3 introduces readers to key research terms and presents an overview of steps in the research process for both qualitative and quantitative studies. • Part II—Conceptualizing and Planning a Study to Generate Evidence further sets the stage for learning about the research process by discussing issues relating to a study’s conceptualization: the formulation of research questions and hypotheses (Chapter 4), the review of relevant research (Chapter 5), the development of theoretical and conceptual contexts (Chapter 6), and the fostering of ethically sound approaches in doing research (Chapter 7). Chapter 8 provides an overview of important issues that researchers must attend to during the planning of any type of study. • Part III—Designing and Conducting Quantitative Studies to Generate Evidence presents material on undertaking quantitative nursing studies. Chapter 9 describes fundamental principles and applications of quantitative research design, and Chapter 10 focuses on methods to enhance the rigor of a quantitative study, including mechanisms of research control. Chapter 11 examines research with different and distinct purposes, including surveys, outcomes research, and evaluations. Chapter 12 presents strategies for sampling study participants in quantitative research. Chapter 13 describes using structured data collection methods that yield quantitative information. Chapter 14 discusses the concept of measurement and then focuses on methods of assessing 21 the quality of formal measuring instruments. In this edition, we describe methods to assess the properties of point-in-time measurements (reliability and validity) and longitudinal measurements—change scores (reliability of change scores and responsiveness). Chapter 15 presents material on how to develop high-quality self-report instruments. Chapters 16, 17, and 18 present an overview of univariate, bivariate, and multivariate statistical analyses, respectively. Chapter 19 describes the development of an overall analytic strategy for quantitative studies, including material on handling missing data. Chapter 20, a new chapter, discusses the issue of interpreting results and making inferences about clinical significance. • Part IV—Designing and Conducting Qualitative Studies to Generate Evidence presents material on undertaking qualitative nursing studies. Chapter 21 is devoted to research designs and approaches for qualitative studies, including material on critical theory, feminist, and participatory action research. Chapter 22 discusses strategies for sampling study participants in qualitative inquiries. Chapter 23 describes methods of gathering unstructured self-report and observational data for qualitative studies. Chapter 24 discusses methods of analyzing qualitative data, with specific information on grounded theory, phenomenologic, and ethnographic analyses. Chapter 25 elaborates on methods qualitative researchers can use to enhance (and assess) integrity and quality throughout their inquiries. • Part V—Designing and Conducting Mixed Methods Studies to Generate Evidence presents material on mixed methods nursing studies. Chapter 26 discusses a broad range of issues, including asking mixed methods questions, designing a study to address the questions, sampling participants in mixed methods research, and analyzing and integrating qualitative and quantitative data. Chapter 27 presents innovative information about using mixed methods approaches in the development of nursing interventions. In Chapter 28, a new chapter, we provide guidance for designing and conducting a pilot study and using data from the pilot to draw conclusions about how best to proceed. • Part VI—Building an Evidence Base for Nursing Practice provides additional guidance on linking research and clinical practice. Chapter 29 offers an overview of methods of conducting systematic reviews that support EBP, with an emphasis on meta-analyses, metasyntheses, and mixed studies reviews. Chapter 30 discusses dissemination of evidence—how to prepare a research report (including theses and dissertations) and how to publish research findings. The concluding chapter (Chapter 31) offers suggestions and guidelines on developing research proposals and getting financial support and includes information about applying for NIH grants and interpreting scores from NIH’s 22 new scoring system. K E Y FE AT U R E S This textbook was designed to be helpful to those who are learning how to do research as well as to those who are learning to appraise research reports critically and to use research findings in practice. Many of the features successfully used in previous editions have been retained in this 10th edition. Among the basic principles that helped to shape this and earlier editions of this book are (1) an unswerving conviction that the development of research skills is critical to the nursing profession, (2) a fundamental belief that research is intellectually and professionally rewarding, and (3) a steadfast opinion that learning about research methods need be neither intimidating nor dull. Consistent with these principles, we have tried to present the fundamentals of research methods in a way that both facilitates understanding and arouses curiosity and interest. Key features of our approach include the following: • Research Examples. Each chapter concludes with one or two actual research examples designed to highlight critical points made in the chapter and to sharpen the reader’s critical thinking skills. In addition, many research examples are used to illustrate key points in the text and to stimulate ideas for a study. Many of the examples used in this edition are open-access articles that can be used for further learning and classroom discussions. • Critiquing Guidelines. Most chapters include guidelines for conducting a critique of each aspect of a research report. These guidelines provide a list of questions that draw attention to specific aspects of a report that are amenable to appraisal. • Clear, “user-friendly” style. Our writing style is designed to be easily digestible and nonintimidating. Concepts are introduced carefully and systematically, difficult ideas are presented clearly, and readers are assumed to have no prior exposure to technical terms. • Specific practical tips on doing research. This textbook is filled with practical guidance on how to translate the abstract notions of research methods into realistic strategies for conducting research. Every chapter includes several tips for applying the chapter’s lessons to real-life situations. These suggestions are in recognition of the fact that there is often a large gap between what gets taught in research methods textbooks and what a researcher needs to know to conduct a study. • Aids to student learning. Several features are used to enhance and reinforce learning and to help focus the student’s attention on specific areas of text content, including the following: succinct, bulleted summaries at the end of each 23 chapter; tables and figures that provide examples and graphic materials in support of the text discussion; study suggestions at the end of each chapter; a detailed glossary; and a comprehensive index for accessing information quickly. T E A C H I N G – L E A R N I N G PA C K A G E Nursing Research: Generating and Assessing Evidence for Nursing Practice, 10th edition, has an ancillary package designed with both students and instructors in mind. • The Resource Manual augments the textbook in important ways. The manual itself provides students with exercises that correspond to each text chapter, with a focus on opportunities to critique actual studies. The appendix includes 12 research journal articles in their entirety, plus a successful grant application for a study funded by the National Institute of Nursing Research. The 12 reports cover a range of nursing research ventures, including qualitative, quantitative, and mixed methods studies, an instrument development study, an evidencebased practice translation project, and two systematic reviews. Full critiques of two of the reports are also included and can serve as models for a comprehensive research critique. • The Toolkit to the Resource Manual is a “must-have” innovation that will save considerable time for both students and seasoned researchers. Included on thePoint, the Toolkit offers dozens of research resources in Word documents that can be downloaded and used directly or adapted. The resources reflect bestpractice research material, most of which have been pretested and refined in our own research. The Toolkit originated with our realization that in our technologically advanced environment, it is possible to not only illustrate methodologic tools as graphics in the textbook but also to make them directly available for use and adaptation. Thus, we have included dozens of documents in Word files that can readily be used in research projects, without requiring researchers to “reinvent the wheel” or tediously retype material from this textbook. Examples include informed consent forms, a demographic questionnaire, content validity forms, and a coding sheet for a meta-analysis— to name only a few. The Toolkit also has lists of relevant and useful websites for each chapter, which can be “clicked” on directly without having to retype the URL and risk a typographical error. Links to open-access articles cited in the textbook, as well as other open-access articles relevant to each chapter, are included in the Toolkit. • The Instructor’s Resources on the Point include PowerPoint slides summarizing key points in each chapter, test questions that have been placed into a program that allows instructors to automatically generate a test, and an 24 image bank. It is our hope that the content, style, and organization of this book continue to meet the needs of a broad spectrum of nursing students and nurse researchers. We also hope that this book will help to foster enthusiasm for the kinds of discoveries that research can produce and for the knowledge that will help support an evidence-based nursing practice. DENISE F. POLIT, PhD, FAAN CHERYL TATANO BECK, DNSc, CNM, FAAN 25 26 Contents PART 1: FOUNDATIONS OF NURSING RESEARCH Chapter 1: Introduction to Nursing Research in an Evidence-Based Practice Environment Chapter 2: Evidence-Based Nursing: Translating Research Evidence into Practice Chapter 3: Key Concepts and Steps in Qualitative and Quantitative Research PART 2: CONCEPTUALIZING AND PLANNING A STUDY TO GENERATE EVIDENCE FOR NURSING Chapter 4: Research Problems, Research Questions, and Hypotheses Chapter 5: Literature Reviews: Finding and Critiquing Evidence Chapter 6: Theoretical Frameworks Chapter 7: Ethics in Nursing Research Chapter 8: Planning a Nursing Study PART 3: DESIGNING AND CONDUCTING QUANTITATIVE STUDIES TO GENERATE EVIDENCE FOR NURSING Chapter 9: Quantitative Research Design Chapter 10: Rigor and Validity in Quantitative Research Chapter 11: Specific Types of Quantitative Research Chapter 12: Sampling in Quantitative Research Chapter 13: Data Collection in Quantitative Research Chapter 14: Measurement and Data Quality Chapter 15: Developing and Testing Self-Report Scales Chapter 16: Descriptive Statistics Chapter 17: Inferential Statistics 27 Chapter 18: Multivariate Statistics Chapter 19: Processes of Quantitative Data Analysis Chapter 20: Clinical Significance and Interpretation of Quantitative Results PART 4: DESIGNING AND CONDUCTING QUALITATIVE STUDIES TO GENERATE EVIDENCE FOR NURSING Chapter 21: Qualitative Research Design and Approaches Chapter 22: Sampling in Qualitative Research Chapter 23: Data Collection in Qualitative Research Chapter 24: Qualitative Data Analysis Chapter 25: Trustworthiness and Integrity in Qualitative Research PART 5: DESIGNING AND CONDUCTING MIXED METHODS STUDIES TO GENERATE EVIDENCE FOR NURSING Chapter 26: Basics of Mixed Methods Research Chapter 27: Developing Complex Nursing Interventions Using Mixed Methods Research Chapter 28: Feasibility Assessments and Pilot Tests of Interventions Using Mixed Methods PART 6: BUILDING AN EVIDENCE BASE FOR NURSING PRACTICE Chapter 29: Systematic Reviews of Research Evidence: Meta-Analysis, Metasynthesis, and Mixed Studies Review Chapter 30: Disseminating Evidence: Reporting Research Findings Chapter 31: Writing Proposals to Generate Evidence Glossary Appendix: Statistical Tables Index 28 Check Out the Latest Book Authored by Research Expert Dr. Polit If you want to make thoughtful but practical decisions about the measurement of health constructs, check out Dr. Polit and Dr. Yang’s latest book, a “gentle” introduction to and overview of complex measurement content, called Measurement and the Measurement of Change. This book is for researchers and clinicians from all health disciplines because measurement is vital to high-quality science and to excellence in clinical practice. The text focuses on the measurement of health constructs, particularly those constructs that are not amenable to quantification by means of laboratory analysis or technical instrumentation. These health constructs include a wide range of human attributes, such as quality of life, functional ability, self-efficacy, depression, and pain. Measures of such constructs are proliferating at a rapid rate and often without adequate attention paid to ensuring that standards of scientific rigor are met. 29 In this book, the authors offer guidance to those who develop new instruments, adapt existing ones, select instruments for use in a clinical trial or in clinical practice, interpret information from measurements and changes in scores, or undertake a systematic review on instruments. This book offers guidance on how to develop new instruments using both “classical” and “modern” approaches from psychometrics as well as methods used in clinimetrics. Much of this book, however, concerns the evaluation of instruments in relation to three key measurement domains: reliability, validity, and responsiveness. This text was designed to be useful in graduate-level courses on measurement or research methods and will also serve as an important reference and resource for researchers and clinicians. 30 PART 1 FOUNDATIONS OF NURSING RESEARCH 31 1 Introduction to Nursing Research in an Evidence-Based Practice Environment 32 NURSING RESEARCH IN PERSPECTIVE In all parts of the world, nursing has experienced a profound culture change. Nurses are increasingly expected to understand and conduct research and to base their professional practice on research evidence—that is, to adopt an evidencebased practice (EBP). EBP involves using the best evidence (as well as clinical judgment and patient preferences) in making patient care decisions, and “best evidence” typically comes from research conducted by nurses and other health care professionals. What Is Nursing Research? Research is systematic inquiry that uses disciplined methods to answer questions or solve problems. The ultimate goal of research is to develop and expand knowledge. Nurses are increasingly engaged in disciplined studies that benefit nursing and its clients. Nursing research is systematic inquiry designed to generate trustworthy evidence about issues of importance to the nursing profession, including nursing practice, education, administration, and informatics. In this book, we emphasize clinical nursing research, that is, research to guide nursing practice and to improve the health and quality of life of nurses’ clients. Nursing research has experienced remarkable growth in the past three decades, providing nurses with a growing evidence base from which to practice. Yet many questions endure and much remains to be done to incorporate research innovations into nursing practice. Examples of Nursing Research Questions: • How effective is pressurized irrigation, compared to a swabbing method, in cleansing wounds, in terms of time to wound healing, pain, patients’ satisfaction with comfort, and costs? (Mak et al., 2015) • What are the experiences of women in Zimbabwe who are living with advanced HIV infection? (Gona & DeMarco, 2015) The Importance of Research in Nursing Research findings from rigorous studies provide especially strong evidence for informing nurses’ decisions and actions. Nurses are accepting the need to base specific nursing actions on research evidence indicating that the actions are clinically appropriate, cost-effective, and result in positive outcomes for clients. In the United States, research plays an important role in nursing in terms of cred 33 entialing and status. The American Nurses Credentialing Center (ANCC)—an arm of the American Nurses Association and the largest and most prestigious credentialing organization in the United States—developed a Magnet Recognition Program to acknowledge health care organizations that provide high-quality nursing care. As Reigle and her colleagues (2008) noted, “the road to Magnet Recognition is paved with EBP” (p. 102) and the 2014 Magnet application manual incorporated revisions that strengthened evidence-based requirements (Drenkard, 2013). The good news is that there is growing confirmation that the focus on research and evidence-based practice may have important payoffs. For example, McHugh and co-researchers (2013) found that Magnet hospitals have lower riskadjusted mortality and failure to rescue than non-Magnet hospitals, even when differences among the hospitals in nursing credentials and patient characteristics are taken into account. Changes to nursing practice now occur regularly because of EBP efforts. Practice changes often are local initiatives that are not publicized, but broader clinical changes are also occurring based on accumulating research evidence about beneficial practice innovations. Example of Evidence-Based Practice: Numerous clinical practice changes reflect the impact of research. For example, “kangaroo care” (the holding of diaper-clad infants skin to skin by parents) is now practiced in many neonatal intensive care units (NICUs), but this is a relatively new trend. As recently as the 1990s, only a minority of NICUs offered kangaroo care options. Expanded adoption of this practice reflects mounting evidence that early skin-to-skin contact has benefits without negative side effects (e.g., Ludington-Hoe, 2011; Moore et al., 2012). Some of that evidence came from rigorous studies conducted by nurse researchers in several countries (e.g., Chwo et al., 2002; Cong et al., 2009; Cong et al., 2011; Hake-Brooks & Anderson, 2008). Nurses continue to study the potential benefits of kangaroo care in important clinical trials (e.g., Campbell-Yeo et al., 2013). The Consumer–Producer Continuum in Nursing Research In our current environment, all nurses are likely to engage in activities along a continuum of research participation. At one end of the continuum are consumers of nursing research, who read research reports or research summaries to keep up-to-date on findings that might affect their practice. EBP depends on well-informed nursing research consumers. At the other end of the continuum are the producers of nursing research: nurses who design and conduct research. At one time, most nurse researchers were 34 academics who taught in schools of nursing, but research is increasingly being conducted by nurses in health care settings who want to find solutions to recurring problems in patient care. Between these end points on the continuum lie a variety of research activities that are undertaken by nurses. Even if you never personally undertake a study, you may (1) contribute to an idea or a plan for a clinical study; (2) gather data for a study; (3) advise clients about participating in research; (4) solve a clinical problem by searching for research evidence; or (5) discuss the implications of a new study in a journal club in your practice setting, which involves meetings (in groups or online) to discuss research articles. In all possible research001-related activities, nurses who have some research skills are better able than those without them to make a contribution to nursing and to EBP. An understanding of nursing research can improve the depth and breadth of every nurse’s professional practice. Nursing Research in Historical Perspective Table 1.1 summarizes some of the key events in the historical evolution of nursing research. (An expanded summary of the history of nursing research appears in the Supplement to this chapter on ). 35 Most people would agree that research in nursing began with Florence Nightingale in the 1850s. Her most well-known research contribution involved an analysis of factors affecting soldier mortality and morbidity during the Crimean War. Based on skillful analyses, she was successful in effecting changes in nursing care and, more generally, in public health. After Nightingale’s work, research was absent from the nursing literature until the early 1900s, but most early studies concerned nurses’ education rather than clinical issues. In the 1950s, research by nurses began to accelerate. For example, a nursing research center was established at the Walter Reed Army Institute of Research. Also, the American Nurses Foundation, which is devoted to the promotion of nursing research, was founded. The surge in the number of studies conducted in the 1950s created the need for a new journal; Nursing Research came into being in 1952. As shown in Table 1.1, dissemination opportunities in professional journals grew steadily thereafter. In the 1960s, nursing leaders expressed concern about the shortage of research 36 on practice issues. Professional nursing organizations, such as the Western Interstate Council for Higher Education in Nursing, established research priorities, and practice-oriented research on various clinical topics began to emerge in the literature. During the 1970s, improvements in client care became a more visible research priority and nurses also began to pay attention to the clinical utilization of research findings. Guidance on assessing research for application in practice settings became available. Several journals that focus on nursing research were established in the 1970s, including Advances in Nursing Science, Research in Nursing & Health, and the Western Journal of Nursing Research. Nursing research also expanded internationally. For example, the Workgroup of European Nurse Researchers was established in 1978 to develop greater communication and opportunities for partnerships among 25 European National Nurses Associations. Nursing research continued to expand in the 1980s. In the United States, the National Center for Nursing Research (NCNR) at the National Institutes of Health (NIH) was established in 1986. Several forces outside of nursing also helped to shape the nursing research landscape. A group from the McMaster Medical School in Canada designed a clinical learning strategy that was called evidence-based medicine (EBM). EBM, which promulgated the view that research findings were far superior to the opinions of authorities as a basis for clinical decisions, constituted a profound shift for medical education and practice, and has had a major effect on all health care professions. Nursing research was strengthened and given more visibility when NCNR was promoted to full institute status within the NIH. In 1993, the National Institute of Nursing Research (NINR) was established, helping to put nursing research more into the mainstream of health research. Funding opportunities for nursing research expanded in other countries as well. Current and Future Directions for Nursing Research Nursing research continues to develop at a rapid pace and will undoubtedly flourish in the 21st century. Funding continues to grow. For example, NINR funding in fiscal year 2014 was more than $140 million compared to $70 million in 1999—and the competition for available funding is increasingly vigorous as more nurses seek support for testing innovative ideas for practice improvements. Broadly speaking, the priority for future nursing research will be the promotion of excellence in nursing science. Toward this end, nurse researchers and practicing nurses will be sharpening their research skills and using those skills to address 37 emerging issues of importance to the profession and its clientele. Among the trends we foresee for the early 21st century are the following: • Continued focus on EBP. Encouragement for nurses to engage in evidence-based patient care is sure to continue. In turn, improvements will be needed both in the quality of studies and in nurses’ skills in locating, understanding, critiquing, and using relevant study results. Relatedly, there is an emerging interest in translational research— research on how findings from studies can best be translated into practice. Translation potential will require researchers to think more strategically about long-term feasibility, scalability, and sustainability when they test solutions to problems. • Development of a stronger evidence base through confirmatory strategies. Practicing nurses are unlikely to adopt an innovation based on weakly designed or isolated studies. Strong research designs are essential, and confirmation is usually needed through the replication (i.e., the repeating) of studies with different clients, in different clinical settings, and at different times to ensure that the findings are robust. • Greater emphasis on systematic reviews. Systematic reviews are a cornerstone of EBP and will take on increased importance in all health disciplines. Systematic reviews rigorously integrate research information on a topic so that conclusions about the state of evidence can be reached. Best practice clinical guidelines typically rely on such systematic reviews. • Innovation. There is currently a major push for creative and innovative solutions to recurring practice problems. “Innovation” has become an important buzzword throughout NIH and in nursing associations. For example, the 2013 annual conference of the Council for the Advancement of Nursing Science was “Innovative Approaches to Symptom Science.” Innovative interventions—and new methods for studying nursing questions—are sure to be part of the future research landscape in nursing. • Expanded local research in health care settings. Small studies designed to solve local problems will likely increase. This trend will be reinforced as more hospitals apply for (and are recertified for) Magnet status in the United States and in other countries. Mechanisms will need to be developed to ensure that evidence from these small projects becomes available to others facing similar problems, such as communication within and between regional nursing research alliances. • Strengthening of interdisciplinary collaboration. Collaboration of nurses with researchers in related fields is likely to expand in the 21st century as researchers address fundamental health care problems. In turn, such collaborative efforts 38 could lead to nurse researchers playing a more prominent role in national and international health care policies. One of four major recommendations in a 2010 report on the future of nursing by the Institute of Medicine was that nurses should be full partners with physicians and other health care professionals in redesigning health care. • Expanded dissemination of research findings. The Internet and other electronic communication have a big impact on disseminating research information, which in turn helps to promote EBP. Through technologic advances, information about innovations can be communicated more widely and more quickly than ever before. • Increased focus on cultural issues and health disparities. The issue of health disparities has emerged as a central concern in nursing and other health disciplines; this in turn has raised consciousness about the cultural sensitivity of health interventions and the cultural competence of health care workers. There is growing awareness that research must be sensitive to the health beliefs, behaviors, and values of culturally and linguistically diverse populations. • Clinical significance and patient input. Research findings increasingly must meet the test of being clinically significant, and patients have taken center stage in efforts to define clinical significance. A major challenge in the years ahead will involve getting both research evidence and patient preferences into clinical decisions, and designing research to study the process and the outcomes. Broad research priorities for the future have been articulated by many nursing organizations, including NINR and Sigma Theta Tau International. Expert panels and research working groups help NINR to identify gaps in current knowledge that require research. The primary areas of research funded by NINR in 2014 were health promotion/disease prevention, eliminating health disparities, caregiving, symptom management, and self-management. Research priorities that have been expressed by Sigma Theta Tau International include advancing healthy communities through health promotion; preventing disease and recognizing social, economic, and political determinants; implementation of evidence-based practice; targeting the needs of vulnerable populations such as the poor and chronically ill; and developing nurses’ capacity for research. Priorities also have been developed for several nursing specialties and for nurses in several countries—for example, Ireland (Brenner et al., 2014; Drennan et al., 2007), Sweden (Bäck-Pettersson et al., 2008), Australia (Wynaden et al., 2014), and Korea (Kim et al., 2002). S O U R C E S O F E V I D E N C E FO R N U R S I N G PR A C T I C E Nurses make clinical decisions based on knowledge from many sources, including 39 coursework, textbooks, and their own clinical experience. Because evidence is constantly evolving, learning about best practice nursing perseveres throughout a nurse’s career. Some of what nurses learn is based on systematic research, but much of it is not. What are the sources of evidence for nursing practice? Where does knowledge for practice come from? Until fairly recently, knowledge primarily was handed down from one generation to the next based on experience, trial and error, tradition, and expert opinion. Information sources for clinical practice vary in dependability, giving rise to what is called an evidence hierarchy, which acknowledges that certain types of evidence are better than others. A brief discussion of some alternative sources of evidence shows how research001-based information is different. Tradition and Authority Decisions are sometimes based on custom or tradition. Certain “truths” are accepted as given, and such “knowledge” is so much a part of a common heritage that few seek verification. Tradition facilitates communication by providing a common foundation of accepted truth, but many traditions have never been evaluated for their validity. There is concern that some nursing interventions are based on tradition, custom, and “unit culture” rather than on sound evidence. Indeed, a recent analysis suggests that some “sacred cows” (ineffective traditional habits) persist even in a health care center recognized as a leader in evidence-based practice (Hanrahan et al., 2015). Another common source of information is an authority, a person with specialized expertise. We often make decisions about problems with which we have little experience; it seems natural to place our trust in the judgment of people with specialized training or experience. As a source of evidence, however, authority has shortcomings. Authorities are not infallible, particularly if their expertise is based primarily on personal experience; yet, like tradition, their knowledge often goes unchallenged. Example of “Myths” in Nursing Textbooks: A study suggests that even nursing textbooks may contain “myths.” In their analysis of 23 widely used undergraduate psychiatric nursing textbooks, Holman and colleagues (2010) found that all books contained at least one unsupported assumption (myth) about loss and grief—that is, assumptions not supported by research evidence. Moreover, many evidence-based findings about grief and loss failed to be included in the textbooks. Clinical Experience, Trial and Error, and Intuition Clinical experience is a familiar, functional source of knowledge. The ability to 40 generalize, to recognize regularities, and to make predictions is an important characteristic of the human mind. Nevertheless, personal experience is limited as a knowledge source because each nurse’s experience is too narrow to be generally useful. A second limitation is that the same objective event is often experienced and perceived differently by two nurses. A related method is trial and error in which alternatives are tried successively until a solution to a problem is found. We likely have all used this method in our professional work. For example, many patients dislike the taste of potassium chloride solution. Nurses try to disguise the taste of the medication in various ways until one method meets with the approval of the patient. Trial and error may offer a practical means of securing knowledge, but the method tends to be haphazard and solutions may be idiosyncratic. Intuition is a knowledge source that cannot be explained based on reasoning or prior instruction. Although intuition and hunches undoubtedly play a role in nursing—as they do in the conduct of research—it is difficult to develop nursing policies and practices based on intuition. Logical Reasoning Solutions to some problems are developed by logical thought processes. As a problem-solving method, logical reasoning combines experience, intellectual faculties, and formal systems of thought. Inductive reasoning involves developing generalizations from specific observations. For example, a nurse may observe the anxious behavior of (specific) hospitalized children and conclude that (in general) children’s separation from their parents is stressful. Deductive reasoning involves developing specific predictions from general principles. For example, if we assume that separation anxiety occurs in hospitalized children (in general), then we might predict that (specific) children in a hospital whose parents do not room-in will manifest symptoms of stress. Both systems of reasoning are useful for understanding and organizing phenomena, and both play a role in research. Logical reasoning in and of itself, however, is limited because the validity of reasoning depends on the accuracy of the premises with which one starts. Assembled Information In making clinical decisions, health care professionals rely on information that has been assembled for a variety of purposes. For example, local, national, and international benchmarking data provide information on such issues as infection rates or the rates of using various procedures (e.g., cesarean births) and can 41 facilitate evaluations of clinical practices. Cost data—information on the costs associated with certain procedures, policies, or practices—are sometimes used as a factor in clinical decision making. Quality improvement and risk data, such as medication error reports, can be used to assess the need for practice changes. Such sources are useful, but they do not provide a good mechanism for determining whether improvements in patient outcomes result from their use. Disciplined Research Research conducted in a disciplined framework is the most sophisticated method of acquiring knowledge. Nursing research combines logical reasoning with other features to create evidence that, although fallible, tends to yield the most reliable evidence. Carefully synthesized findings from rigorous research are at the pinnacle of most evidence hierarchies. The current emphasis on EBP requires nurses to base their clinical practice to the greatest extent possible on rigorous research001-based findings rather than on tradition, authority, intuition, or personal experience— although nursing will always remain a rich blend of art and science. PA R A D I G M S A N D M E T H O D S FO R N U R S I N G RESEARCH A paradigm is a worldview, a general perspective on the complexities of the world. Paradigms for human inquiry are often characterized in terms of the ways in which they respond to basic philosophical questions, such as, What is the nature of reality? (ontologic) and What is the relationship between the inquirer and those being studied? (epistemologic). Disciplined inquiry in nursing has been conducted mainly within two broad paradigms, positivism and constructivism. This section describes these two paradigms and outlines the research methods associated with them. In later chapters, we describe the transformative paradigm that involves critical theory research (Chapter 21), and a pragmatism paradigm that involves mixed methods research (Chapter 26). The Positivist Paradigm The paradigm that dominated nursing research for decades is known as positivism (also called logical positivism). Positivism is rooted in 19th century thought, guided by such philosophers as Mill, Newton, and Locke. Positivism reflects a broader cultural phenomenon that, in the humanities, is referred to as modernism, which emphasizes the rational and the scientific. As shown in Table 1.2, a fundamental assumption of positivists is that there is a reality out there that can be studied and known (an assumption is a basic principle 42 that is believed to be true without proof or verification). Adherents of positivism assume that nature is basically ordered and regular and that reality exists independent of human observation. In other words, the world is assumed not to be merely a creation of the human mind. The related assumption of determinism refers to the positivists’ belief that phenomena are not haphazard but rather have antecedent causes. If a person has a cerebrovascular accident, the researcher in a positivist tradition assumes that there must be one or more reasons that can be potentially identified. Within the positivist paradigm, much research activity is directed at understanding the underlying causes of phenomena. Positivists value objectivity and attempt to hold personal beliefs and biases in check to avoid contaminating the phenomena under study. The positivists’ scientific approach involves using orderly, disciplined procedures with tight controls of the research situation to test hunches about the phenomena being studied. Strict positivist thinking has been challenged, and few researchers adhere to the 43 tenets of pure positivism. In the postpositivist paradigm, there is still a belief in reality and a desire to understand it, but postpositivists recognize the impossibility of total objectivity. They do, however, see objectivity as a goal and strive to be as neutral as possible. Postpositivists also appreciate the impediments to knowing reality with certainty and therefore seek probabilistic evidence—that is, learning what the true state of a phenomenon probably is, with a high degree of likelihood. This modified positivist position remains a dominant force in nursing research. For the sake of simplicity, we refer to it as positivism. The Constructivist Paradigm The constructivist paradigm (often called the naturalistic paradigm) began as a countermovement to positivism with writers such as Weber and Kant. Just as positivism reflects the cultural phenomenon of modernism that burgeoned after the industrial revolution, naturalism is an outgrowth of the cultural transformation called postmodernism. Postmodern thinking emphasizes the value of deconstruction—taking apart old ideas and structures—and reconstruction—putting ideas and structures together in new ways. The constructivist paradigm represents a major alternative system for conducting disciplined research in nursing. Table 1.2 compares the major assumptions of the positivist and constructivist paradigms. For the naturalistic inquirer, reality is not a fixed entity but rather is a construction of the individuals participating in the research; reality exists within a context, and many constructions are possible. Naturalists thus take the position of relativism: If there are multiple interpretations of reality that exist in people’s minds, then there is no process by which the ultimate truth or falsity of the constructions can be determined. The constructivist paradigm assumes that knowledge is maximized when the distance between the inquirer and those under study is minimized. The voices and interpretations of study participants are crucial to understanding the phenomenon of interest, and subjective interactions are the primary way to access them. Findings from a constructivist inquiry are the product of the interaction between the inquirer and the participants. Paradigms and Methods: Quantitative and Qualitative Research Research methods are the techniques researchers use to structure a study and to gather and analyze information relevant to the research question. The two alternative paradigms correspond to different 44 methods for developing evidence. A key methodologic distinction is between quantitative research, which is most closely allied with positivism, and qualitative research, which is associated with constructivist inquiry—although positivists sometimes undertake qualitative studies, and constructivist researchers sometimes collect quantitative information. This section provides an overview of the methods associated with the two paradigms. The Scientific Method and Quantitative Research The traditional, positivist scientific method refers to a set of orderly, disciplined procedures used to acquire information. Quantitative researchers use deductive reasoning to generate predictions that are tested in the real world. They typically move in a systematic fashion from the definition of a problem and the selection of concepts on which to focus to the solution of the problem. By systematic, we mean that the investigator progresses logically through a series of steps, according to a specified plan of action. Quantitative researchers use various control strategies. Control involves imposing conditions on the research situation so that biases are minimized and precision and validity are maximized. Control mechanisms are discussed at length in this book. Quantitative researchers gather empirical evidence—evidence that is rooted in objective reality and gathered through the senses. Empirical evidence, then, consists of observations gathered through sight, hearing, taste, touch, or smell. Observations of the presence or absence of skin inflammation, patients’ anxiety level, or infant birth weight are all examples of empirical observations. The requirement to use empirical evidence means that findings are grounded in reality rather than in researchers’ personal beliefs. Evidence for a study in the positivist paradigm is gathered according to an established plan, using structured methods to collect needed information. Usually (but not always) the information gathered is quantitative—that is, numeric information that is obtained from a formal measurement and is analyzed statistically. A traditional scientific study strives to go beyond the specifics of a research situation. For example, quantitative researchers are typically not as interested in understanding why a particular person has a stroke as in understanding what factors influence its occurrence in people generally. The degree to which research 45 findings can be generalized to individuals other than those who participated in the study is called the study’s generalizability. The scientific method has enjoyed considerable stature as a method of inquiry and has been used productively by nurse researchers studying a range of nursing problems. This is not to say, however, that this approach can solve all nursing problems. One important limitation—common to both quantitative and qualitative research—is that research cannot be used to answer moral or ethical questions. Many persistent, intriguing questions about human beings fall into this area— questions such as whether euthanasia should be practiced or abortion should be legal. The traditional research approach also must contend with problems of measurement. To study a phenomenon, quantitative researchers attempt to measure it by attaching numeric values that express quantity. For example, if the phenomenon of interest is patient stress, researchers would want to assess if patients’ stress is high or low, or higher under certain conditions or for some people. Physiologic phenomena such as blood pressure and temperature can be measured with great accuracy and precision, but the same cannot be said of most psychological phenomena, such as stress or resilience. Another issue is that nursing research focuses on humans, who are inherently complex and diverse. Traditional quantitative methods typically concentrate on a relatively small portion of the human experience (e.g., weight gain, depression) in a single study. Complexities tend to be controlled and, if possible, eliminated, rather than studied directly, and this narrowness of focus can sometimes obscure insights. Finally, quantitative research within the positivist paradigm has been accused of an inflexibility of vision that does not capture the full breadth of human experience. Constructivist Methods and Qualitative Research Researchers in constructivist traditions emphasize the inherent complexity of humans, their ability to shape and create their own experiences, and the idea that truth is a composite of realities. Consequently, constructivist studies are heavily focused on understanding the human experience as it is lived, usually through the careful collection and analysis of qualitative materials that are narrative and subjective. Researchers who reject the traditional scientific method believe that it is overly reductionist—that is, it reduces human experience to the few concepts under investigation, and those concepts are defined in advance by the researcher rather than emerging from the experiences of those under study. Constructivist 46 researchers tend to emphasize the dynamic, holistic, and individual aspects of human life and attempt to capture those aspects in their entirety, within the context of those who are experiencing them. Flexible, evolving procedures are used to capitalize on findings that emerge in the course of the study. Constructivist inquiry usually takes place in the field (i.e., in naturalistic settings), often over an extended time period. In constructivist research, the collection of information and its analysis typically progress concurrently; as researchers sift through information, insights are gained, new questions emerge, and further evidence is sought to amplify or confirm the insights. Through an inductive process, researchers integrate information to develop a theory or description that helps illuminate the phenomenon under observation. Constructivist studies yield rich, in-depth information that can elucidate varied dimensions of a complicated phenomenon. Findings from in-depth qualitative research are typically grounded in the real-life experiences of people with firsthand knowledge of a phenomenon. Nevertheless, the approach has several limitations. Human beings are used directly as the instrument through which information is gathered, and humans are extremely intelligent and sensitive—but fallible—tools. The subjectivity that enriches the analytic insights of skillful researchers can yield trivial and obvious “findings” among less competent ones. Another potential limitation involves the subjectivity of constructivist inquiry, which sometimes raises concerns about the idiosyncratic nature of the conclusions. Would two constructivist researchers studying the same phenomenon in similar settings arrive at similar conclusions? The situation is further complicated by the fact that most constructivist studies involve a small group of participants. Thus, the generalizability of findings from constructivist inquiries is an issue of potential concern. Multiple Paradigms and Nursing Research Paradigms should be viewed as lenses that help to sharpen our focus on a phenomenon, not as blinders that limit intellectual curiosity. The emergence of alternative paradigms for studying nursing problems is, in our view, a healthy and desirable path that can maximize the breadth of evidence for practice. Although researchers’ worldview may be paradigmatic, knowledge itself is not. Nursing knowledge would be thin if there were not a rich array of methods available within the two paradigms— methods that are often complementary in their strengths and limitations. We believe that intellectual pluralism is advantageous. 47 We have emphasized differences between the two paradigms and associated methods so that distinctions would be easy to understand—although for many of the issues included in Table 1.2, differences are more on a continuum than they are a dichotomy. Subsequent chapters of this book elaborate further on differences in terminology, methods, and research products. It is equally important, however, to note that the two main paradigms have many features in common, only some of which are mentioned here: • Ultimate goals. The ultimate aim of disciplined research, regardless of the underlying paradigm, is to gain understanding about phenomena. Both quantitative and qualitative researchers seek to capture the truth with regard to an aspect of the world in which they are interested, and both groups can make meaningful—and mutually beneficial—contributions to evidence for nursing practice. • External evidence. Although the word empiricism has come to be allied with the classic scientific method, researchers in both traditions gather and analyze evidence empirically, that is, through their senses. Neither qualitative nor quantitative researchers are armchair analysts, depending on their own beliefs and worldviews to generate knowledge. • Reliance on human cooperation. Because evidence for nursing research comes primarily from humans, human cooperation is essential. To understand people’s characteristics and experiences, researchers must persuade them to participate in the investigation and to speak and act candidly. • Ethical constraints. Research with human beings is guided by ethical principles that sometimes interfere with research goals. As we discuss in Chapter 7, ethical dilemmas often confront researchers, regardless of paradigms or methods. • Fallibility of disciplined research. Virtually all studies have some limitations. Every research question can be addressed in many ways, and inevitably, there are trade-offs. The fallibility of any single study makes it important to understand and critique researchers’ methodologic decisions when evaluating evidence quality. Thus, despite philosophic and methodologic differences, researchers using traditional scientific methods or constructivist methods share overall goals and face many similar challenges. The selection of an appropriate method depends on researchers’ personal philosophy and also on the research question. If a researcher asks, “What are the effects of cryotherapy on nausea and oral mucositis in patients undergoing chemotherapy?” the researcher needs to examine the effects through the careful measurement of patient outcomes. On the other hand, if a researcher asks, “What is the process by which parents learn to cope with the death of a child?” the researcher would be hard pressed to quantify such a process. Personal 48 worldviews of researchers help to shape their questions. In reading about the alternative paradigms for nursing research, you likely were more attracted to one of the two paradigms. It is important, however, to learn about both approaches to disciplined inquiry and to recognize their respective strengths and limitations. In this textbook, we describe methods associated with both qualitative and quantitative research in an effort to assist you in becoming methodologically bilingual. This is especially important because large numbers of nurse researchers are now undertaking mixed methods research that involves gathering and analyzing both qualitative and quantitative data (Chapters 26–28). 49 THE PURPOSES OF NURSING RESEARCH The general purpose of nursing research is to answer questions or solve problems of relevance to nursing. Specific purposes can be classified in various ways. We describe three such classifications—not because it is important for you to categorize a study as having one purpose or the other but rather because this will help us to illustrate the broad range of questions that have intrigued nurses and to further show differences between qualitative and quantitative inquiry. Applied and Basic Research Sometimes a distinction is made between basic and applied research. As traditionally defined, basic research is undertaken to enhance the base of knowledge or to formulate or refine a theory. For example, a researcher may perform an in-depth study to better understand normal grieving processes, without having explicit nursing applications in mind. Some types of basic research are called bench research, which is usually performed in a laboratory and focuses on the molecular and cellular mechanisms that underlie disease. Example of Basic Nursing Research: Kishi and a multidisciplinary team of researchers (2015) studied the effect of hypo-osmotic shock of epidermal cells on skin inflammation in a rat model, in an effort to understand the physiologic mechanism underlying aquagenic pruritus (disrupted skin barrier function) in the elderly. Applied research seeks solutions to existing problems and tends to be of greater immediate utility for EBP. Basic research is appropriate for discovering general principles of human behavior and biophysiologic processes; applied research is designed to indicate how these principles can be used to solve problems in nursing practice. In nursing, the findings from applied research may pose questions for basic research, and the results of basic research often suggest clinical applications. Example of Applied Nursing Research: S. Martin and colleagues (2014) studied whether positive therapeutic suggestions given via headphones to children emerging from anesthesia after a tonsillectomy would help to lower the children’s pain. Research to Achieve Varying Levels of Explanation Another way to classify research purposes concerns the extent to which studies provide explanatory information. Although specific study goals can 50 range along an explanatory continuum, a fundamental distinction (relevant especially in quantitative research) is between studies whose primary intent is to describe phenomena, and those that are causeprobing—that is, designed to illuminate the underlying causes of phenomena. Within a descriptive/explanatory framework, the specific purposes of nursing research include identification, description, exploration, prediction/control, and explanation. For each purpose, various types of question are addressed—some more amenable to qualitative than to quantitative inquiry and vice versa. Identification and Description Qualitative researchers sometimes study phenomena about which little is known. In some cases, so little is known that the phenomenon has yet to be clearly identified or named or has been inadequately defined. The in-depth, probing nature of qualitative research is well suited to the task of answering such questions as, “What is this phenomenon?” and “What is its name?” (Table 1.3). In quantitative research, by contrast, researchers begin with a phenomenon that has been previously studied or defined— sometimes in a qualitative study. Thus, in quantitative research, identification typically precedes the inquiry. 51 Qualitative Example of Identification: Wojnar and Katzenmeyer (2013) studied the experiences of preconception, pregnancy, and new motherhood for lesbian nonbiologic mothers. They identified, through in-depth interviews with 24 women, a unique description of a pervasive feeling they called otherness. Description is another important research purpose. Examples of phenomena that nurse researchers have described include patients’ pain, confusion, and coping. Quantitative description focuses on the incidence, size, and measurable attributes of phenomena. Qualitative researchers, by contrast, describe the dimensions and meanings of phenomena. Table 1.3 shows descriptive questions posed by quantitative and qualitative researchers. Quantitative Example of Description: Palese and colleagues (2015) conducted a study to describe the average healing time of stage II pressure ulcers. They found that it took approximately 23 days to achieve complete reepithelialization. Qualitative Example of Description: Archibald and colleagues (2015) undertook an in-depth study to describe the information needs of parents of children with asthma. Exploration 52 Exploratory research begins with a phenomenon of interest, but rather than simply observing and describing it, exploratory research investigates the full nature of the phenomenon, the manner in which it is manifested, and the other factors to which it is related. For example, a descriptive quantitative study of patients’ preoperative stress might document the degree of stress patients feel before surgery and the percentage of patients who are stressed. An exploratory study might ask: What factors diminish or increase a patient’s stress? Are nurses’ behaviors related to a patient’s stress level? Qualitative methods are especially useful for exploring the full nature of a little-understood phenomenon. Exploratory qualitative research is designed to shed light on the various ways in which a phenomenon is manifested and on underlying processes. Quantitative Example of Exploration: Lee and colleagues (2014) explored the association between physical activity in older adults and their level of depressive symptoms. Qualitative Example of Exploration: Based on in-depth interviews with adults living on a reservation in the United States, D. Martin and Yurkovich (2014) explored American Indians’ perception of a healthy family. Explanation The goals of explanatory research are to understand the underpinnings of natural phenomena and to explain systematic relationships among them. Explanatory research is often linked to theories, which are a method of integrating ideas about phenomena and their interrelationships. Whereas descriptive research provides new information and exploratory research provides promising insights, explanatory research attempts to offer understanding of the underlying causes or full nature of a phenomenon. In quantitative research, theories or prior findings are used deductively to generate hypothesized explanations that are then tested. In qualitative studies, researchers search for explanations about how or why a phenomenon exists or what a phenomenon means as a basis for developing a theory that is grounded in rich, in-depth evidence. Quantitative Example of Explanation: Golfenshtein and Drach001-Zahavy (2015) tested a theoretical model (attribution theory) to understand the role of patients’ attributions in nurses’ regulation of emotions in pediatric hospital wards. Qualitative Example of Explanation: Smith-Young and colleagues (2014) conducted an in-depth study to develop a theoretical understanding of the process of managing work-related musculoskeletal disorders while remaining at the workplace. They called this process constant negotiation. Prediction and Control 53 Many phenomena defy explanation. Yet it is frequently possible to make predictions and to control phenomena based on research findings, even in the absence of complete understanding. For example, research has shown that the incidence of Down syndrome in infants increases with the age of the mother. We can predict that a woman aged 40 years is at higher risk of bearing a child with Down syndrome than is a woman aged 25 years. We can partially control the outcome by educating women about the risks and offering amniocentesis to women older than 35 years of age. The ability to predict and control in this example does not depend on an explanation of why older women are at a higher risk of having an abnormal child. In many quantitative studies, prediction and control are key objectives. Although explanatory studies are powerful in an EBP environment, studies whose purpose is prediction and control are also critical in helping clinicians make decisions. Quantitative Example of Prediction: Dang (2014) studied factors that predicted resilience among homeless youth with histories of maltreatment. Social connectedness and self-esteem were predictive of better mental health. Research Purposes Linked to Evidence-Based Practice The purpose of most nursing studies can be categorized on a descriptive–explanatory dimension as just described, but some studies do not fall into such a system. For example, a study to develop and rigorously test a new method of measuring patient outcomes cannot easily be classified on this continuum. In both nursing and medicine, several books have been written to facilitate evidence-based practice, and these books categorize studies in terms of the types of information needed by clinicians (DiCenso et al., 2005; Guyatt et al., 2008; Melnyk & Fineout-Overholt, 2011). These writers focus on several types of clinical concerns: treatment, therapy, or intervention; diagnosis and assessment; prognosis; prevention of harm; etiology; and meaning. Not all nursing studies have one of these purposes, but most of them do. Treatment, Therapy, or Intervention Nurse researchers undertake studies designed to help nurses make evidence-based treatment decisions about how to prevent a health problem or how to manage an existing problem. Such studies range from evaluations of highly specific treatments or therapies (e.g., comparing two types of cooling blankets for febrile patients) to complex multisession interventions designed to effect major behavioral changes (e.g., nurse-led smoking 54 cessation interventions). Such intervention research plays a critical role in EBP. Example of a Study Aimed at Treatment/Therapy: Ling and co-researchers (2014) tested the effectiveness of a school-based healthy lifestyle intervention designed to prevent childhood obesity in four rural elementary schools. Diagnosis and Assessment A burgeoning number of nursing studies concern the rigorous development and evaluation of formal instruments to screen, diagnose, and assess patients and to measure important clinical outcomes. High-quality instruments with documented accuracy are essential both for clinical practice and for further research. Example of a Study Aimed at Diagnosis/Assessment: Pasek and colleagues (2015) developed a prototype of an electronic headache pain diary for children and evaluated the clinical feasibility of the diary for assessing and documenting concussion headache. Prognosis Studies of prognosis examine outcomes associated with a disease or health problem, estimate the probability they will occur, and predict the types of people for whom the outcomes are most likely. Such studies facilitate the development of long-term care plans for patients. They provide valuable information for guiding patients to make lifestyle choices or to be vigilant for key symptoms. Prognostic studies can also play a role in resource allocation decisions. Example of a Study Aimed at Prognosis: Storey and Von Ah (2015) studied the prevalence and impact of hyperglycemia on hospitalized leukemia patients, in terms of such outcomes as neutropenia, infection, and length of hospital stay. Prevention of Harm and Etiology (Causation) Nurses frequently encounter patients who face potentially harmful exposures as a result of environmental agents or because of personal behaviors or characteristics. Providing useful information to patients about such harms and how best to avoid them depends on the availability of accurate evidence about health risks. Moreover, it can be difficult to prevent harms if we do not know what causes them. For example, there would be no smoking cessation programs if research had not provided firm evidence that smoking cigarettes causes or contributes 55 to a wide range of health problems. Thus, identifying factors that affect or cause illness, mortality, or morbidity is an important purpose of many nursing studies. Example of a Study Aimed at Identifying and Preventing Harms: Hagerty and colleagues (2015) undertook a study to identify risk factors for catheter-associated urinary tract infections in critically ill patients with subarachnoid hemorrhage. The risk factors examined included patients’ blood sugar levels, patient age, and levels of anemia requiring transfusion. Meaning and Processes Designing effective interventions, motivating people to comply with treatments and health promotion activities, and providing sensitive advice to patients are among the many health care activities that can greatly benefit from understanding the clients’ perspectives. Research that provides evidence about what health and illness mean to clients, what barriers they face to positive health practices, and what processes they experience in a transition through a health care crisis are important to evidence-based nursing practice. Example of a Study Aimed at Studying Meaning: Carlsson and Persson (2015) studied what it means to live with intestinal failure caused by Crohn disease and the influence it has on daily life. TIP: Several of these EBP-related purposes (except diagnosis and meaning) fundamentally call for cause-probing research. For example, research on interventions focuses on whether an intervention causes improvements in key outcomes. Prognosis research asks if a disease or health condition causes subsequent adverse outcomes, and etiology research seeks explanations about the underlying causes of health problems. A S S I S TA N C E FO R U S E R S O F N U R S I N G R E S E A R C H This book is designed primarily to help you develop skills for conducting research, but in an environment that stresses EBP, it is extremely important to hone your skills in reading, evaluating, and using nursing studies. We provide specific guidance to consumers in most chapters by including guidelines for critiquing aspects of a study covered in the chapter. The questions in Box 1.1 are designed to assist you in using the information in this chapter in an overall preliminary assessment of a research report. BOX 1.1 Questions for a Preliminary Overview of a 56 Research Report 1. How relevant is the research problem in this report to the actual practice of nursing? Does the study focus on a topic that is a priority area for nursing research? 2. Is the research quantitative or qualitative? 3. What is the underlying purpose (or purposes) of the study—identification, description, exploration, explanation, or prediction and control? Does the purpose correspond to an EBP focus such as treatment, diagnosis, prognosis, harm/etiology, or meaning? 4. Is this study fundamentally cause-probing? 5. What might be some clinical implications of this research? To what type of people and settings is the research most relevant? If the findings are accurate, how might I use the results of this study? TIP: The Resource Manual that accompanies this book offers particularly rich opportunities to practice your critiquing skills. The Toolkit on thePoint with the Resource Manual includes Box 1.1 as a Word document, which will allow you to adapt these questions, if desired, and to answer them directly into a Word document without having to retype the questions. 57 RESEARCH EXAMPLES Each chapter of this book presents brief descriptions of studies conducted by nurse researchers, focusing on aspects emphasized in the chapter. Reading the full journal articles would prove useful for learning more about the studies, their methods, and the findings. Research Example of a Quantitative Study Study: The effects of a community-based, culturally tailored diabetes prevention intervention for high-risk adults of Mexican descent (Vincent et al., 2014) Study Purpose: The purpose of the study was to evaluate the effectiveness of a 5-month nurse-coached diabetes prevention program (Un Estilo de Vida Saludable or EVS) for overweight Mexican American adults. Study Methods: A total of 58 Spanish-speaking adults of Mexican descent were recruited to participate in the study. Some of the participants, at random, were in a group that received the EVS intervention, while others in a control group did not receive it. The EVS intervention used content from a previously tested diabetes prevention program, but the researchers created a community-based, culturally tailored intervention for their population. The intervention, which was offered in community rooms of churches, consisted of an intensive phase of eight weekly 2-hour sessions, followed by a maintenance phase of 1-hour sessions for the final 3 months. Those in the group not receiving the intervention received educational sessions broadly aimed at health promotion in general. The researchers compared the two groups with regard to several important outcomes, such as weight loss, waist circumference, body mass index, and self-efficacy. Outcome information was gathered three times—at the outset of the study (prior to the intervention), 8 weeks later, and then after the program ended. Key Findings: The analysis suggested that those in the intervention group had several better outcomes, such as greater weight loss, smaller waist circumference, and lower body mass index, than those in the control group. Conclusions: Vincent and her colleagues (2014) concluded that implementing the culturally tailored program was feasible, was well-received among participants (e.g., high rates of program retention), and was effective in decreasing risk factors for type 2 diabetes. Research Example of a Quantitative Study Study: Silent, invisible, and unacknowledged: Experiences of young caregivers of single 58 parents diagnosed with multiple sclerosis (Bjorgvinsdottir & Halldorsdottir, 2014) Study Purpose: The purpose of this study was to study the personal experience of being a young caregiver of a chronically ill parent diagnosed with multiple sclerosis (MS). Study Methods: Young adults in Iceland whose parents were diagnosed with MS were recruited through the Icelandic National Multiple Sclerosis Society, and 11 agreed to be included in the study. Participants were interviewed in their own homes or in the home of the lead researcher, whichever they preferred. In-depth questioning was used to probe the experiences of the participants. The main interview question was: “Can you tell me about your personal experience being a young caregiver of a chronically ill parent with MS?” Several participants were interviewed twice to ensure rich and deep descriptions for a total of 21 interviews. Key Findings: The young caregivers felt that they were invisible and unacknowledged as caregivers and received limited support and assistance from professionals. Their responsibilities led to severe personal restrictions and they felt they had lived without a true childhood because they were left to manage adult-like responsibilities at a young age. Their role as caregiver was demanding and stressful, and they felt unsupported and abandoned. Conclusions: The researchers concluded that health professionals should be more vigilant about the needs for support and guidance for children and adolescents caring for chronically ill parents. 59 SUMMARY POINTS • Nursing research is systematic inquiry to develop knowledge about issues of importance to nurses. Nurses are adopting an evidence-based practice (EBP) that incorporates research findings into their clinical decisions. • Nurses can participate in a range of research-related activities that span a continuum from being consumers of research (those who read and evaluate studies) and producers of research (those who design and undertake studies). • Nursing research began with Florence Nightingale but developed slowly until its rapid acceleration in the 1950s. Since the 1970s, nursing research has focused on problems relating to clinical practice. • The National Institute of Nursing Research (NINR), established at the U.S. National Institutes of Health in 1993, affirms the stature of nursing research in the United States. • Contemporary emphases in nursing research include EBP projects, replications of research, research integration through systematic reviews, multisite and interdisciplinary studies, expanded dissemination efforts, and increased focus on health disparities. • Disciplined research is a better evidence source for nursing practice than other sources, such as tradition, authority, personal experience, trial and error, intuition, and logical reasoning. • Nursing research is conducted mainly within one of two broad paradigms— worldviews with underlying assumptions about reality: the positivist paradigm and the constructivist paradigm. • In the positivist paradigm, it is assumed that there is an objective reality and that natural phenomena are regular and orderly. The related assumption of determinism is the belief that phenomenas result from prior causes and are not haphazard. • In the constructivist (naturalistic) paradigm, it is assumed that reality is not fixed but is rather a construction of human minds; thus, “truth” is a composite of multiple constructions of reality. • The positivist paradigm is associated with quantitative research—the collection and analysis of numeric information. Quantitative research is typically conducted within the traditional scientific method, which is a systematic, controlled process. Quantitative researchers gather and analyze 60 empirical evidence (evidence collected through the human senses) and strive for generalizability of their findings beyond the study setting. • Researchers within the constructivist paradigm emphasize understanding the human experience as it is lived through the collection and analysis of subjective, narrative materials using flexible procedures that evolve in the field; this paradigm is associated with qualitative research. • Basic research is designed to extend the knowledge base for the sake of knowledge itself. Applied research focuses on discovering solutions to immediate problems. • A fundamental distinction, especially relevant in quantitative research, is between studies whose primary intent is to describe phenomena and those that are cause-probing—that is, designed to illuminate underlying causes of phenomena. Specific purposes on the description/explanation continuum include identification, description, exploration, prediction/control, and explanation. • Many nursing studies can also be classified in terms of a key EBP aim: treatment/therapy/intervention; diagnosis and assessment; prognosis; harm and etiology; and meaning and process. 61 STUDY ACTIVITIES Chapter 1 of the Resource Manual for Nursing Research: Generating and Assessing Evidence for Nursing Practice, 10th edition, offers study suggestions for reinforcing concepts presented in this chapter. In addition, the following questions can be addressed in classroom or online discussions: 1. Is your worldview closer to the positivist or the constructivist paradigm? Explore the aspects of the two paradigms that are especially consistent with your worldview. 2. Answer the questions in Box 1.1 about the Vincent et al. (2014) study described at the end of this chapter. Could this study have been undertaken as a qualitative study? Why or why not? 3. Answer the questions in Box 1.1 about the Bjorgvinsdottir and Halldorsdottir (2014) study described at the end of this chapter. Could this study have been undertaken as a quantitative study? Why or why not? S T U D I E S C I T E D I N C H A PT E R 1 Archibald, M. M., Caine, V., Ali, S., Hartling, L., & Scott, S. (2015). What is left unsaid: An interpretive description of the information needs of parents of children with asthma. Research in Nursing & Health, 38, 19–28. Bäck-Pettersson, S., Hermansson, E., Sernert, N., & Bjökelund, C. (2008). Research priorities in nursing —A Delphi study among Swedish nurses. Journal of Clinical Nursing, 17, 2221–2231. Bjorgvinsdottir, K., & Halldorsdottir, S. (2014). Silent, invisible and unacknowledged: Experiences of young caregivers of single parents diagnosed with multiple sclerosis. Scandinavian Journal of the Caring Sciences, 28, 38–48. Brenner, M., Hilliard, C., Regan, G., Coughlan, B., Hayden, S., Drennan, J., & Kelleher, D. (2014). Research priorities for children’s nursing in Ireland. Journal of Pediatric Nursing, 29, 301–308. *Campbell-Yeo, M., Johnston, C., Benoit, B., Latimer, M., Vincer, M., Walker, C., . . . Caddell, K. (2013). Trial of repeated analgesia with kangaroo mother care (TRAKC trial). BMC Pediatrics, 13, 182. Carlsson, E., & Persson, E. (2015). Living with intestinal failure by Crohn disease: Not letting the disease conquer life. Gastroenterology Nursing, 38, 12–20. Chwo, M. J., Anderson, G. C., Good, M., Dowling, D. A., Shiau, S. H., & Chu, D. M. (2002). A randomized controlled trial of early kangaroo care for preterm infants: Effects on temperature, weight, behavior, and acuity. Journal of Nursing Research, 10, 129–142. *Cong, X., Ludington-Hoe, S., McCain, G., & Fu, P. (2009). Kangaroo care modifies preterm infant heart rate variability in response to heel stick pain. Early Human Development, 85, 561–567. Cong, X., Ludington-Hoe, S., & Walsh, S. (2011). Randomized crossover trial of kangaroo care to reduce behavioral pain responses in preterm infants. Biological Research for Nursing, 13, 204–216. Dang, M. T. (2014). Social connectedness and self-esteem: Predictors of resilience in mental health among maltreated homeless youth. Issues in Mental Health Nursing, 35, 212–219. DiCenso, A., Guyatt, G., & Ciliska, D. (2005). Evidence-based nursing: A guide to clinical practice. St. Louis, MO: Elsevier Mosby. 62 Drenkard, K. (2013). Change is good: Introducing the 2014 Magnet Application Manual. Journal of Nursing Administration, 43, 489–490. Drennan, J., Meehan, T., Kemple, M., Johnson, M., Treacy, M., & Butler, M. (2007). Nursing research priorities for Ireland. Journal of Nursing Scholarship, 39, 298–305. Golfenshtein, N., & Drach001-Zahavy, A. (2015). An attribution theory perspective on emotional labour in nurse-patient encounters: A nested cross-sectional study in paediatric settings. Journal of Advanced Nursing, 71(5), 1123–1134. Gona, C., & DeMarco, R. (2015). The context and experience of becoming HIV infected for Zimbabwean women: Unheard voices revealed. Journal of the Association of Nurses in AIDS Care, 26, 57–68. Guyatt, G., Rennie, D., Meade, M., & Cook, D. (2008). Users’ guide to the medical literature: Essentials of evidence-based clinical practice (2nd ed.). New York: McGraw Hill. Hagerty, T., Kertesz, L., Schmidt, J., Agarwal, S., Claassen, J., Mayer, S., . . . Shang, K. (2015). Risk factors for catheter-associated urinary tract infections in critically ill patients with subarachnoid hemorrhage. Journal of Neuroscience Nursing, 47, 51–54. Hake-Brooks, S., & Anderson, G. (2008). Kangaroo care and breastfeeding of mother-preterm dyads 0–18 months: A randomized controlled trial. Neonatal Network, 27, 151–159. Hanrahan, K., Wagner, M., Matthews, G., Stewart, S., Dawson, C., Greiner, J., . . . Williamson, A. (2015). Sacred cows gone to pasture: A systematic evaluation and integration of evidence-based practice. Worldview on Evidence-Based Nursing, 12, 3–11. Holman, E., Perisho, J., Edwards, A., & Mlakar, N. (2010). The myths of coping with loss in undergraduate psychiatric nursing books. Research in Nursing & Health, 33, 486–499. *Institute of Medicine. (2010). The future of nursing: Leading change, advancing health. Washington, DC: The National Academies Press. Kim, M. J., Oh, E. G., Kim, C. J., Yoo, J. S., & Ko, I. S. (2002). Priorities for nursing research in Korea. Journal of Nursing Scholarship, 34, 307–312. Kishi, C., Minematsu, T., Huang, L., Mugita, Y., Kitamura, A., Nakagami, G., . . . Sanada, H. (2015). Hypo-osmotic shock-induced subclinical inflammation of skin in a rat model of disrupted skin barrier function. Biological Research for Nursing, 17, 135–141. Lee, H., Lee, J., Brar, J., Rush, E., & Jolley, C. (2014). Physical activity and depressive symptoms in older adults. Geriatric Nursing, 35, 37–41. Ling, J., King, K., Speck, B., Kim, S., & Wu, D. (2014). Preliminary assessment of a school-based healthy lifestyle intervention among rural elementary school children. Journal of School Health, 84, 247–255. Ludington-Hoe, S. M. (2011). Thirty years of kangaroo care science and practice. Neonatal Network, 30, 357–362. Mak, S., Lee, M., Cheung, J., Choi, K., Chung, T., Wong, T., . . . & Lee, D. (2015). Pressurised irrigation versus swabbing method in cleansing wounds healed by secondary intention: A randomized controlled trial with cost effectiveness analysis. International Journal of Nursing Studies, 52, 88–101. Martin, D., & Yurkovich, E. (2014). “Close knit” defines a healthy native American Indian family. Journal of Family Nursing, 20, 51–72. Martin, S., Smith, A., Newcomb, P., & Miller, J. (2014). Effects of therapeutic suggestion under anesthesia on outcomes in children post-tonsillectomy. Journal of Perianesthesia Nursing, 29, 94–106. *McHugh, M. D., Kelly, L. A., Smith, H. L., Wu, E. S., Vanak, J., & Aiken, L. H. (2013). Lower mortality in Magnet hospitals. Medical Care, 51, 382–388. Melnyk, B. M., & Fineout-Overholt, E. (2011). Evidence-based practice in nursing and healthcare: A guide to best practice (2nd ed.). Philadelphia: Lippincott Williams & Wilkins. *Moore, E., Anderson, G., Bergman, N., & Dowswell, T. (2012). Early skin-to-skin contact for mothers 63 and their health newborn infants. Cochrane Database of Systematic Reviews, (3), CD0003519. Palese, A., Luisa, S., Ilenia, P., Laquintana, D., Stinco, G., & DeLiulio, P. (2015). What is the healing time of stage II pressure ulcers? Findings from a secondary analysis. Advances in Skin and Would Care, 28, 79–75. Pasek, T., Locasto, L., Reichard, J., Fazio Sumrok, V., Johnson, E., & Kontos, A. (2015). The headache electronic diary for children with concussion. Clinical Nurse Specialist, 29, 80–88. Reigle, B. S., Stevens, K., Belcher, J., Huth, M., McGuire, E., Mals, D., & Volz, T. (2008). Evidencebased practice and the road to Magnet status. The Journal of Nursing Administration, 38, 97–102. Smith-Young, J., Solberg, S., & Gaudine, A. (2014). Constant negotiating: Managing work-related musculoskeletal disorders while remaining in the workplace. Qualitative Health Research, 24, 217– 231. Storey, S., & Von Ah, D. (2015). Prevalence and impact of hyperglycemia on hospitalized leukemia patients. European Journal of Oncology Nursing, 19, 13–17. Vincent, D., McEwen, M., Hepworth, J., & Stump, C. (2014). The effects of a community-based, culturally tailored diabetes prevention intervention for high-risk adults of Mexican descent. The Diabetes Educator, 40, 202–213. Wojnar, D. M., & Katzenmeyer, A. (2013). Experiences of preconception, pregnancy, and new motherhood for lesbian nonbiological mothers. Journal of Obstetric, Gynecologic, and Neonatal Nursing, 43, 50–60. Wynaden, D., Heslop, K., Omari, O., Nelson, D., Osmond, B., Taylor, M., & Gee, T. (2014). Identifying mental health nursing priorities: A Delphi study. Contemporary Nurse, 47, 16–26. *A link to this open-access journal article is provided in the Toolkit for this chapter in the accompanying Resource Manual. 64 2 EvidenceBased Nursing: Translating Research Evidence into Practice his book will help you to develop the skills you need to generate and evaluate research evidence for nursing practice. Before we delve into the “how-tos” of research, we discuss key aspects of evidencebased practice (EBP) to clarify the key role that research plays in nursing. T BACKGROUND OF EVIDENCEBASED NURSING PR A C T I C E This section provides a context for understanding evidencebased nursing practice and two closely related concepts, research utilization and knowledge translation. Definition of EvidenceBased Practice Pioneer David Sackett defined evidence as “the integration of best research evidence with clinical expertise and patient values” (Sackett et al., 2000, p. 1). Scott and McSherry (2009), in their review of evidencebased nursing concepts, identified 13 overlapping but distinct definitions of evidencebased nursing and EBP. The definition proposed by Sigma Theta Tau International (2008) is as follows: “The process of shared decisionmaking between practitioner, patient, and others significant to them based on research evidence, the patient’s experiences and preferences, clinical expertise or know-how, and other available robust sources of information” (p. 57). A key ingredient in EBP is the effort to personalize “best evidence” to a specific patient’s needs within a particular clinical context. A basic feature of EBP as a clinical problem-solving strategy is that it deemphasizes decisions based on custom, authority, or ritual. The emphasis is on identifying the best available research evidence and integrating it with other factors. In many areas of clinical decision making, research has demonstrated that “tried and true” practices taught in basic nursing education are not always best. For 65 example, although many nurses not so long ago were taught to place infants in the prone sleeping position to prevent aspiration, there is strong evidence that the supine (back) sleeping position decreases the risk of sudden infant death syndrome (SIDS). TIP: The consequences of not using research evidence can be devastating. For example, from 1956 through the 1980s, Dr. Benjamin Spock published several editions of a top-selling book, Baby and Child Care, which advised putting babies on their stomachs to sleep. In their systematic review of evidence, Gilbert and colleagues (2005) wrote, “Advice to put infants to sleep on the front for nearly…
Purchase answer to see full attachment

Summarize Research Articles on template attached

Summarize Research Articles on template attached

Thornton et al. BMC Health Services Research (2017) 17:361 DOI 10.1186/s12913-017-2307-z RESEARCH ARTICLE Open Access Influences on patient satisfaction in healthcare centers: a semi-quantitative study over 5 years Ruth D. Thornton1, Nicole Nurse2, Laura Snavely3, Stacey Hackett-Zahler4, Kenice Frank5 and Robert A. DiTomasso1*

ORDER A PLAGIARISM FREE PAPER NOW

Abstract Background: Knowledge of ambulatory patients’ satisfaction with clinic visits help improve communication and delivery of healthcare. The goal was to examine patient satisfaction in a primary care setting, identify how selected patient and physician setting and characteristics affected satisfaction, and determine if feedback provided to medical directors over time impacted patient satisfaction. Methods: A three-phase, semi-quantitative analysis was performed using anonymous, validated patient satisfaction surveys collected from 889 ambulatory outpatients in 6 healthcare centers over 5-years. Patients’ responses to 21 questions were analyzed by principal components varimax rotated factor analysis. Three classifiable components emerged: Satisfaction with Physician, Availability/Convenience, and Orderly/Time. To study the effects of several independent variables (location of clinics, patients’ and physicians’ age, education level and duration at the clinic), data were subjected to multivariate analysis of variance (MANOVA).. Results: Changes in the healthcare centers over time were not significantly related to patient satisfaction. However, location of the center did affect satisfaction. Urban patients were more satisfied with their physicians than rural, and inner city patients were less satisfied than urban or rural on Availability/Convenience and less satisfied than urban patients on Orderly/Time. How long a patient attended a center most affected satisfaction, with patients attending >10 years more satisfied in all three components than those attending 60 years old. Patients were significantly more satisfied with their 30–40 year-old physicians compared with those over 60. On Orderly/Time, patients were more satisfied with physicians who were in their 50′s than physicians >60. Conclusions: Improvement in patient satisfaction includes a need for immediate, specific feedback. Although Medical Directors received feedback yearly, we found no significant changes in patient satisfaction over time. Our results suggest that, to increase satisfaction, patients with lower education, those who are sicker, and those who are new to the center likely would benefit from additional high quality interactions with their physicians. Keywords: Patient satisfaction, Health care delivery, Community health * Correspondence: RobertD@pcom.edu 1 Department of Psychology, Philadelphia College of Osteopathic Medicine, 4170 City Ave., Philadelphia, PA 19131, USA Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Thornton et al. BMC Health Services Research (2017) 17:361 Background Patient satisfaction surveys are often used to understand patients’ concerns and determine areas for improvement, including improving communication between physicians and patients. Survey results document progress and allow physicians and staff to maintain high standards. Although results of patient satisfaction surveys are used by payer systems to profile individual physicians and guide physician compensation, one study showed that < 25% of primary care physicians found profiles useful for improving patient care and fewer used the profiles to change [1]. Improvements are more likely to occur if staff receives more immediate feedback [2]. Data collection methods play a role in outcomes. Onsite surveys provide an immediate outlet for patients who are experiencing problems, although higher ratings for on-site surveys may also relate directly to doctorpatient communication. Surveys administered later after a clinic visit may yield lower ratings, possibly due to the course of treatment [2, 3]. Many factors influence patient satisfaction. Patient demographics such as age, gender, income, socioeconomic and general health status impact patients’ responses [3, 4]. Characteristics of the medical provider, including demographics and experience, also affect their interactions with patients [5–9]. Other factors include the type of setting the patient is in [10] and the amount of time patients had to wait [11]. However, Anderson found that complaints about wait time can be moderated by time spent with the physician [12]. Physician characteristics extend beyond the obvious. Physician-patient concordance in race, gender or age may be important in patient satisfaction, but many other factors such as primary language, parental status, sexual orientation, values, beliefs, or communication style may be associated [13, 14]. How long the patient has been with this physician and the degree to which the physicians’ communication is patientcentered are significant [13]. A physician’s experience plays a role, with lowest patient satisfaction with firstyear residents; interestingly, residents with some more Page 2 of 9 experience attained similar satisfaction ratings to those of the faculty attendings, suggesting that the requisite skills are acquired during the first year of training [7]. Whether to administer patient satisfaction surveys depends on the overall goals of the medical facility and on physician buy-in to change [1, 15]. The views of the medical director and administrator are key components as to whether the surveys are taken seriously and acted upon by physicians [16]. Patient satisfaction can become a success criterion of the center when physicians and staff meet regularly to discuss improvements in a context of cooperation and mutual support. Methods We initiated this study of patient satisfaction to help physicians better understand their patients at the healthcare centers (HCCs) of a not-for-profit medical school’s outpatient primary care centers on the east coast. Physicians were provided raw data and results of open-ended questions very soon after each year’s study. However, we decided to statistically analyze the overall data in order to understand where patients were most and least satisfied and what influenced their satisfaction. Our goal was to provide information which could help focus physician directors’ changes to improve patient satisfaction. The research was under the auspices of a medical college (Philadelphia College of Osteopathic Medicine, PCOM) which owns and operates five outpatient HCCs, four of which are located within the city limits of Philadelphia and the fifth HCC located in a rural area. [17] Two within Philadelphia are considered urban, while two are in the inner city [18]. An additional nonaffiliated, inner city HCC located within Philadelphia was also used in the research. We considered the nonaffiliated HCC as a control, but expected it to likely agree with data from the affiliated inner city HCCs. The quantity of surveys administered are listed in Table 1. This research arose from a need to quickly and inexpensively conduct patient satisfaction surveys in the Healthcare Centers, incorporating a research component Table 1 Numbers of patients surveyed from each Healthcare center during year 1 (Fall, 2005), year 2 (Summer, 2007), and year 3 (Summer 2010) HCC Location Year 1 # surveyed Year 2 # surveyed Year 3 # surveyed TOTAL surveyed 1 Inner City (PCOM) 40 68 90 198 2 Urban (PCOM) 34 54 69 157 3 Inner City (PCOM) 21 43 70 134 4 Rural (PCOM) 30 19 25 74 5 Urban (PCOM) 25 51 45 121 6 Inner City (non-PCOM) TOTALS 50 75 80 205 200 310 379 889 Thornton et al. BMC Health Services Research (2017) 17:361 involving graduate students interested in health related careers. Surveys were administered to patients at the five HCCs. Patient questions were adapted from the validated DiTomasso-Willard Patient Satisfaction Questionnaire [19] (questions are listed in Table 2). Demographic information and responses to open-ended questions were also collected. In 2005 (year 1), 2007 (year 2), and 2010 (year 3), students in a master’s program at the medical school approached patients in the waiting areas at each HCC asking them to complete a survey. Patients could take the surveys with them into the examination room, but they returned the survey before leaving the HCC. If requested, the student helped a patient read the questions. Each surveying period was conducted over an approximately one month of time. Students varied their sampling by time of day and day of week. Therefore, the sample was comprised of a random representation of patients attending each HCC during each one-month period of surveying. The students approached anyone who was in the waiting room during sampling times, but Page 3 of 9 patients were free to refuse if they wished. The goal was to obtain approximately 10% of the average number of patients seen by each HCC in a month. The protocol (Protocol #H05-022X) was approved by the Institutional Review Board (IRB) of PCOM that determined it to be exempt from informed consent requirements under 45 CFR 46.101(b)(2)–survey research in which the responses will be recorded in such a manner that the human subjects cannot be identified, directly or through identifiers linked to the subjects (e.g., name, Social Security number). Further, no master list existed linking such identifiers to the subjects. Approximately 5–15% of the average numbers of patients coming to each HCC in a month were surveyed. Inclusion criteria included patients willing to respond, patient age of at least 18 years, and patients who spoke English. Patients were assured the questionnaire was confidential without any identifying information, the results would be presented in aggregate form, and that their responses would not affect their specific care at the HCC. In order to maintain anonymity, a patient’s medical status was Table 2 Grouping of the 21 survey questions using factor analysis, Rotated Component Matrix Component: Question: 1 2 3 Q1. During a typical visit, my doctor spends enough time explaining my medical condition to me. 0.773 0.151 0.162 Q2. My doctor gives me the best quality of care. 0.869 0.190 0.133 Q3. I would recommend my doctor to friends. 0.827 0.191 0.112 Q4. The staff are helpful to the patients. 0.311 0.562 0.127 Q5. My doctor uses technical terms that confuse me. 0.109 −0.200 0.628 Q6. My doctor is available when I need him/her.b 0.412 0.491 0.076 Q7. The waiting room time is too long. −0.084 0.402 0.442 Q8. My doctor really follows through. 0.751 0.230 0.082 Q9. I plan to return to this center for care. 0.713 0.370 0.148 Q10. It’s easy to get an appointment when I need one. 0.223 0.665 0.122 Q11. My doctor wastes time talking about things that don’t really matter to me.a 0.271 −0.014 0.702 Q12. My doctor treats the “whole” person. 0.640 0.300 0.143 Q13. The staff accommodates my needs over the phone. 0.241 0.677 0.070 Q14. I am satisfied with the quality of the medical care I receive here. 0.724 0.398 0.171 a b Q15. I receive prompt attention while waiting in this facility. 0.285 0.658 0.132 Q16. I have to tell my story several times before getting an appointment.a 0.001 0.409 0.631 Q17. I am treated the same as other people who get care here. 0.366 0.511 0.105 Q18. Check-out time at the front desk is too time-consuming.a −0.030 0.338 0.648 Q19. I would not recommend this center to a friend. 0.250 0.101 0.530 Q20. Everything seems so confusing at this center.a 0.199 0.160 0.731 Q21. When I’m sick I can get an appointment pretty quickly. 0.229 0.712 0.057 a Component 1: Satisfaction with Doctor (Questions 1, 2, 3, 8, 9, 12, 14) Component 2: Availability/Convenience (Questions 4, 10, 13, 15, 17, 20) Component 3: Orderly/Time (Questions 5, 11, 16, 18, 19, 20) a Questions worded in the negative were reversed for statistical analysis b Question not classified by component Thornton et al. BMC Health Services Research (2017) 17:361 not requested, although in retrospect, it may have been helpful. From observation, students reported that those with acute medical issues were less inclined to participate. Although an absolute count was not performed, students who administered surveys consistently estimated that only about 5% of the patients in the waiting room refused to participate. Survey results were entered into IBM’s Statistical Package for the Social Sciences (SPSS 18.0) for analysis. Missing data were filled in using Linear Interpolation, and any negative questions were transformed to the positive on the Likert scale, so that, for all questions, 5 (strongly agree) meant “most satisfied.” All 21 survey statements were subjected to a principal components varimax rotated factor analysis according to Kaiser’s criterion [20] which ultimately allowed for a reduction of statements into three classifiable components, Satisfaction with Physician, Availability/Convenience, and Orderly/Time (Table 2). Following each survey period, the data were analyzed in SPSS to collapse the questions into three classifiable components/categories. These three categories did not vary during the 3 data collection periods. After each survey period, study staff attended face-to-face meetings with Medical Directors of each healthcare center, the Dean of the Medical School, and the Chair of Family Medicine to present the results. HCC staff were provided with mean scores for each question for their HCC compared with a composite of all HCC’s. They also received the data collapsed into the three categories for their HCC compared with a composite of all HCC’s, but without statistical analysis. For analysis of the composite data, multivariate analysis of variance (MANOVA) was performed for groups of data, using post hoc Tukey to distinguish specific significance between groups. Independent t-test was used for gender analysis, and Chi square analysis was done to compare the observed gender data from patients who completed surveys with patient demographics of each HCC. See Additional Data for more specific information. In using factor analysis, it is common practice to require 10 subjects per number of items. In the present case, this criterion was far exceeded. For the separate MANOVA analyses using 3 dependent variables, setting power at 95% for a medium effect size at the 0.05 level of significance comparing 2 levels (male vs. female) of the independent variable, 3 levels (3 locations) and 5 levels (physician age groups), the required number of subjects was 280, 171, and 145 respectively. In all cases there was sufficient power. Results Surveys were administered to a total of 889 patients who visited one of the HCCs for treatment (Table 1). These Page 4 of 9 numbers represented between 5–15% of the average number of patients seen monthly in the affiliated HCCs, and comparable numbers of surveys were obtained from the much larger, non-affiliated HCC. Applying principal components varimax rotated factor analysis to the survey responses resulted in groups of identifiable questions that constituted factors (Rotated component matrix for all questions is shown on Table 2). Three classifiable factors, Satisfaction with Physician, Availability/Convenience, and Orderly/Time, emerged from the analysis and are used throughout this research. Two questions (Q6 and Q7) were not included as the items did not load on any of the factors (Table 2). Using the survey questions that constituted each factor (Table 2), the three factors have the following characteristics: Satisfaction with Physician involves being satisfied with the quality of medical care received, as well as the physician spending enough time with the patient. Availability/Convenience involves being satisfied with the staff and their helpfulness in making appointments, whether in person or by phone. Orderly/Time has to do with patients’ time being respected, and interactions with staff and physicians being clear and to the point, avoiding confusion. Overall, patients were quite satisfied with their HCCs, as evidenced by overall mean scores greater than 3.89 on a Likert scale of 1–5 (see Additional file 1: Table S3A). Mean scores were highest in Satisfaction with Physician (4.27 ± 0.65), while Availability/Convenience (3.92 ± 0.69) and Orderly/Time (3.89 ± 0.66) were somewhat lower. Even so, a score of 3.9 represents the top 20–25% of satisfaction. The open-ended responses emphasized the importance of patients’ satisfaction with their physician, even if patients were somewhat less satisfied with other aspects of their visit (see Additional file 2: Table S6). The goal of this research was to identify areas found to be statistically significant. More complete data can be found in the Additional files 1, 2, 3,and 4. Based on MANOVA, there was no significance over time in any of the three categories (see Additional file 1: Table S3B). This points to a consistency over time in the operations and functioning of these HCC’s. The following areas were found to be statistically significant by MANOVA: Analyzing satisfaction in inner city, urban and rural HCCs (Fig. 1), significance was observed in the following area.: Patients in inner city HCCs were less satisfied than those in urban or rural HCC’s on Availability/Convenience, and those in inner city HCCs were less satisfied than urban patients in the area of Orderly/Time. Urban patients were more satisfied with their Physician than were rural patients while inner city patients’ satisfaction with Thornton et al. BMC Health Services Research (2017) 17:361 Fig. 1 Satisfaction by location (Inner City, Urban and Rural). Lines/ Brackets indicate comparisons by color that were significantly different in each of the categories their Physician was not significantly different from the other localities (See Additional file 1: Table S3C, for more detail). When individual HCCs were analyzed (Fig. 2), one urban HCC (#5) had significantly higher satisfaction with their Physician than the other urban HCC (#2) or one inner city HCC (#6). The other urban HCC (#2) had more satisfaction in the category of Orderly/Time than two of the three inner city HCCs (#3 and #6). Two inner city HCCs (#1 and #6) had significantly lower satisfaction in the category of Availability/Convenience than the rural HCC (#4). (See Additional file 1: Table S3D, for details.) Patients’ demographics appear to play a role in the level of satisfaction. Patients over 60 years old were more satisfied with the Availability/Convenience of the HCC than patients who were in their 40′s (Fig. 3). Those with more education (in the range from graduating high school through graduate Fig. 2 Satisfaction by individual HCCs. Lines/Brackets indicate comparisons by color that were significantly different in each of the categories Page 5 of 9 school) were more satisfied with the Orderly/Time category than those with less than a high school diploma (Fig. 4). Finally, patients who had been with their HCC for longer periods of time were more satisfied than those who had been there less than 5 years in all three categories of satisfaction with Physician, Availability/Convenience, and Orderly/ Time (Fig. 5) (See Additional file 2: Table S4C, for details). Physicians in these centers tended to longevity in their positions. Patients were more satisfied with their Physicians who were in their 30′s and 40′s than with physicians in their 50′s (Fig. 6). Also, physicians in their 50′s were perceived to be more Available than those in their 60′s. Patients rated male physicians as more Available than female physicians, and in the Inner City HCCs, patients rated their Caucasian physicians higher on Availability than African American physicians (see Additional file 3: Table S5B and C). Open ended responses were overall very positive, with the exception of the rural HCC4 during year 1. After personnel replacements at this HCC, more positive responses were also seen there. Wait times were seen as a problem in some HCCs, particularly in the inner city centers. The majority of patients were very satisfied with the convenience of their HCC (See Additional file 4: Table S6). Discussion In the examination of changes over time, patient satisfaction at the HCCs in the study remained overall quite high in all three categories of Satisfaction with Physician, Availability/Convenience, and Orderly/Time. Meanwhile, notable changes at the affiliated centers during this time period included a new telephone system installed between years 1–2, major renovations of one of the centers in year 2, and installation of a system of Electronic Fig. 3 The effect of patient age on satisfaction. Lines/Brackets indicate comparisons by color that were significantly different in each of the categories Thornton et al. BMC Health Services Research (2017) 17:361 Fig. 4 The effect of patient education on satisfaction. Lines/Brackets indicate comparisons by color that were significantly different in each of the categories Medical Records (EMR) in all affiliated HCCs between years 2 and 3; the non-affiliated HCC #6 also introduced EMR prior to year 3. While telephone changes would likely affect staff-patient interactions, instituting EMR represented a major change in the physician-patient interactions, with the addition of computers to each examination room. We were surprised that these seemingly “major” changes did not significantly affect the satisfaction levels over this time period. De Leon et al. found generally higher patient satisfaction with a center after EMR were introduced [21], while we found no significant differences after EMR was installed. Results of the patient satisfaction surveys were presented to Medical Directors and staff in a timely manner after each survey period, but without statistical analysis. From the initial data given to each HCC, medical staff could compare their mean results with a composite mean result for all the centers. However, they did not Fig. 5 The effect of length of time at a HCC on satisfaction. Lines/ Brackets indicate comparisons by color that were significantly different in each of the categories Page 6 of 9 Fig. 6 The effect of physician’s age on satisfaction. Lines/Brackets indicate comparisons by color that were significantly different in each of the categories have access to comparisons of individual HCCs (see Additional file 1, Table S3D). Nor did they have access to figures such as Fig. 2, comparing individual HCCs. It is not surprising that each HCC is unique. An example is HCC 5 with a significantly higher level of satisfaction with Physician compared with two other HCCs, one urban and inner city (Fig. 2, and Additional file 1: Table S3D). This merits more in-depth analysis of the physician practices at this outstanding urban HCC as a positive example for others. We projected that HCCs sharing similar locations (inner city, urban or rural) would be more alike and this proved to be the case. In the components of Availability/ Convenience and Orderly/Time, patients in the inner city HCCs were less satisfied than those in urban or rural settings, consistent with findings of the individual HCCs. There could be several reasons for differences between inner city and other HCCs. Fan et al. found that functional status (disease severity, physical limitation) was only weakly associated with general satisfaction, while education, coping skills and disease perception were more important to patient’s satisfaction [4]. Patients in the inner city may be sicker due to overall inadequate health knowledge or reluctance to visit a doctor, possibly due to lack of insurance. These findings suggest that physician-patient interactions with the goal of improved disease understanding might help as much as actual improvement in health. We did not ask for the health status of individual patients in our survey, so we can only guess the health status of patients at different locations. Comparing locations (Fig. 1) with individual HCCs (Fig. 2) reveals the sources of these differences. For example, in Fig. 1, inner city patients were statistically less satisfied in the component of Orderly/Time than were patients in urban settings. Fig. 2 shows that the differences were primarily with one urban HCC #2 (but not with urban HCC #5), compared only with 2 inner city Thornton et al. BMC Health Services Research (2017) 17:361 HCC #3 and #6 (but not with inner city HCC #1). So generalizations require examining the individual HCCs as well. Education level of the patient can also be reflective of location. Approximately 80% of inner city respondents reported having high school education or less, similar to rural patients (76%), while only 58% of urban patients had a high school education or less (data not shown). Other issues facing patients, such as availability of public transportation, may be more of an obstacle in the inner city than in either urban or rural settings. While public transportation is also not widely available in rural settings, it is likely most patients have access to a vehicle. Inner city respondents also were less satisfied in the component of Orderly/Time than respondents in urban settings, and this is confirmed in the open-ended questions (see Additional file 4: Table S6) where a larger number of patients specifically mentioned the wait time as a problem in the inner city HCCs than in the urban or rural HCCs. Although we wondered if dissatisfaction with wait time could be directly attributable to student participation in the examination room, that seems not to be the case, as a very small percent of responders mentioned students in the open-ended questions and half of those were positive. Mol et al. found that patients generally felt neutral or positive about the presence of students, and in that study, between 83 and 98% of patients consented to student participation [22]. Our only finding of differences associated with education level in satisfaction were in the area of Orderly/ Time; patients with less than a high school education were less satisfied in the component of Orderly/Time than any other group. This could be due to their inability to understand the medical parlance or the protocols involved in their care. However, one study also found that the converse-a physician’s satisfaction with a patient-was associated with their patients’ higher education level [23], suggesting that the responsibility may be reciprocal between the physician and the patient. Another patient demographic of age can also contribute to patient satisfaction. Our finding that patients over 60 years old had a higher degree of satisfaction in Availability/Convenience is not surprising. This finding agrees with Jackson who reported that patients over 65 years old and with higher functional status were more satisfied [3]. Peck found that physicians were more likely to have patient-centered encounters with patients over age 65, which in turn meant that older patients were more satisfied [24]. Although there was no impact of patients’ gender on level of satisfaction, we did find that, in general, more female patients agreed to fill out the surveys than were actually represented as patients in the HCCs. Not surprisingly, the most significant differences were found in the length of time a patient had been attending their Page 7 of 9 HCC. This is undoubtedly a self-selection, where either the physician or the location suits the patient who continues to visit that center. Pelletier calls this “sampling bias,” citing that “those who stay with a program…may be those who are most satisfied” [23]. Another explanation is through “visit continuity,” where respondents rated the quality of physician-patient interaction as being more important during the early stages of continuity or when the patient reported worse self-rated health [25]. This suggests that physicians who focus on those newer patients or sicker patients who would benefit the most from additional interactions may have the most positive results over time. Demographics of the physician may also be important to patient satisfaction. The physicians at the affiliated HCCs were all osteopathic (DO) physicians, who self-reported that they used Osteopathic Manipulative Treatment at their clinics about 20% of the time. In the open-ended questions, some patients did express a preference for DO physicians. On age of physicians, it appears that more patients prefer a physician younger than 50 years old in the component of Satisfaction with Physician, but in Orderly/ Time, they prefer a physician in their 50′s rather than in their 60′s. We speculate that physicians in their 50′s are likely to be at the pinnacle of their profession, although other considerations may also be important, such as humor or degree of connection that the patient perceives with that physician. In the variable of Orderly/Time, it is possible that physicians in their 50′s may be more efficient, having a well-run visit, while the slower, possibly more thorough pace of older physicians may not be as appreciated. The statistical significances found in this data enhance the details which were presented to the medical directors after each surveying period and provide additional measures of patient satisfaction. Presenting the data to medical directors in figure form rather than as graphs is likely to enhance understanding. Finally, presenting the data of each individual HCC rather than as a composite may help medical directors to see the larger picture. The present study has several limitations: In retrospect from patients’ written responses, an additional choice under the education demographic would have better captured any additional education received, such as technical certificates or Associate degrees. Also, the severity of the patient’s medical condition should have been noted, as this has been shown to influence patient satisfaction [4]. In addition, the questions that fell under the component Orderly/Time in the factor analysis fortuitously contained all questions which had been originally stated in the negative and then were reversed for analysis. Finally, presentation of the data to the medical directors in a timely fashion could be improved by presenting figures in addition to tables, and showing results of each individual HCC. Thornton et al. BMC Health Services Research (2017) 17:361 Conclusions This study was designed to provide feedback to Medical Directors on patient satisfaction in their HCCs. Our findings point to a consistency in the operations and functioning of these HCCs over time, even when renovations or installation of EMR were performed. Differences in locality (inner city, urban, rural) were found, as well as differences in satisfaction by patient demographics (age, education level, length of time with a HCC) and by physician demographics (age, gender). However, uniqueness of individual HCCs contributes to these differences. Physicians from each HCC regularly meet together, and they can use these meetings to help better understand and build on their strengths and individuality. Results of this study can be used to increase satisfaction if physicians help their patients benefit from their services and increase their satisfaction. Particularly, physicians can concentrate on providing additional high-quality interactions for patients with less education, those who are sicker, and those who are new to the HCC. Additional files Additional file 1: Table S3. Comparisons overall and by time, location, individual HCCs vs. 3 components. (DOC 41 kb) Additional file 2: Table S4. Patient demographics vs. three factors. *refers to higher mean score; ns, not significant. (DOC 44 kb) Additional file 3: Table S5. Physician demographics vs. three factors. *refers to higher mean score; ns, not significant. (DOC 40 kb) Additional file 4: Table S6. Open-ended questions by healthcare center and year. (+) refers to positive statements, what did you like most? (−) refers to negative statements, what did you like least? (DOC 48 kb) Abbreviations DO: Doctor of Osteopathic Medicine; EMR: Electronic Medical Records; HCCs: Healthcare Centers; IRB: Institutional Review Board; MANOVA: Multivariate analysis of variants; PCOM: Philadelphia College of Osteopathic Medicine; SPSS: Statistical Package for the Social Sciences Acknowledgements The authors wish to acknowledge Audrey Rossowski, M.S. for collecting surveys at the healthcare centers and Barbara A. Mitchell, Ph.D. for helpful editing. We also sincerely thank PCOM Kenneth Veit, DO, MBA, FACOFP, Provost, Senior Vice President for Academic Affairs and Dean. We also thank PCOM Family Medicine Chair and Director Harry Morris, DO; PCOM Healthcare Center Physicians and Medical Directors, Oliver Bullock, DO., Michael Becker, DO, Izola David, DO, Larry Finklestein, DO, David Kuo, DO, Marta Motel, DO, Barbara Williams-Page, DO, and David Wood, DO; and A. Scott McNeal, DO, Fairmount Primary Care Center, for allowing our participation. An abstract of this research was presented by Kenice Frank, M.S., at the Student National Medical Association’s National Meeting, May, 2012, Atlanta, GA. Funding No funding sources were used for this research project. Availability of data and materials The SPSS data and subsequent analysis is available from RDT and the corresponding author, RAD, on reasonable request. A large part of the data is already shown in Additional files 1, 2, 3, and 4, associated with this publication. Page 8 of 9 Authors’ contributions RDT conceived of the research, wrote the paper, and, with the help of RAD, analyzed the data. NN received her M.S. degree from PCOM for her research on the first year (2005) of the study. She gathered the data, analyzed it, and presented a thesis, “A measure of patient satisfaction of PCOM healthcare centers based upon geographic settings.” LS received her M.S. degree from PCOM for her research on the first year (2005) of the study. She gathered the data, analyzed it, and presented a thesis, “The effects of demographic factors on patient satisfaction in an ambulatory setting.” SH-Z received her M.S. degree from PCOM for her research on the second year (2007) of the study. She gathered the data for 2007, analyzed the 2007 data and compared it with 2005 data, and presented a thesis, “Examining improvement levels in measured patient satisfaction in an academic primary care setting.” KF gathered the data on the third year (2010) of the study. She analyzed the 2010 data, compared it with the 2005 and 2007 data, and presented a poster on the study at the Student National Medical Association in 2011. RAD gave guidance to the entire study, providing the original survey questions [17], analyzing statistically all of the data, serving on each M.S. student’s thesis committee, and editing the paper. All authors read and approved the final manuscript. Competing interests The authors declare that they have no competing interests. Consent for publication Not applicable. Ethics approval and consent to participate The protocol was approved by the Institutional Review Board (IRB) at Philadelphia College of Osteopathic Medicine that determined it to be exempt from informed consent requirements under 45 CFR 46.101(b)(2)survey research in which the responses will be recorded in such a manner that the human subjects cannot be identified, directly or through identifiers linked to the subjects (e.g., name, Social Security number). Further, no master list existed linking such identifiers to the subjects. Inclusion criteria included patients willing to respond, patient age of at least 18 years, and patients who spoke English. Patients were assured the questionnaire was confidential without any identifying information, the results would be presented in aggregate form, and that their responses would not affect their specific care at the HCC. Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Author details 1 Department of Psychology, Philadelphia College of Osteopathic Medicine, 4170 City Ave., Philadelphia, PA 19131, USA. 2North Philadelphia Health System/St. Joseph’s Hospital, Philadelphia, PA, USA. 3Geisinger Medical Center, Danville, PA, USA. 4Maria Fareri Children’s Hospital, Westchester, NY, USA. 5College of Podiatric Medicine & Surgery, Des Moines University, Des Moines, IO, USA. Received: 3 April 2017 Accepted: 11 May 2017 References 1. Rider EA, Perrin JM. Performance profiles: the influence of patient satisfaction data on physicians’ practice. Pediatrics. 2002;109(5):752–7. 2. Burroughs TE, Waterman BM, Gilin D, Adams D, McCollegan J, Cira J. Do onsite patient satisfaction surveys bias results? Jt Comm J Qual Pt Safety. 2005; 31(3):158–66. 3. Jackson JL, Chamberlin J, Kroenke K. Predictors of patient satisfaction. Soc Sci Med. 2001;52(4):609–20. 4. Fan VS, Reiber GE, Diehr P, Burman M, McDonell MB, Fihn SD. Functional status and patient satisfaction: a comparison of ischemic heart disease, obstructive lung disease, and diabetes mellitus. J Gen Intern Med. 2005; 20(5):452–9. 5. Fan VS, Burman M, McDonell MB, Fihn SD. Continuity of care and other determinants of patient satisfaction with primary care. J Gen Intern Med. 2005;20(3):226–33. Thornton et al. BMC Health Services Research (2017) 17:361 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. Page 9 of 9 Fairchild DG, McLoughlin KS, Gharib S, Horsky J, Portnow M, Richter J, Gagliano N, Bates DW. Productivity, quality, and patient satisfaction: comparison of part-time and full-time primary care physicians. J Gen Intern Med. 2001;16(10):663–7. Monk SM, Nanagas MT, Fitch JL, Stolfi A, Pickoff AS. Comparison of resident and faculty patient satisfaction surveys in a pediatric ambulatory clinic. Teach Learn Med. 2006;18(4):343–7. Rodriguez HP, von Glahn T, Chang H, Rogers WH, Safran DG. Measuring patients’ experiences with individual specialist physicians and their practices. Am J Med Qual. 2009;24(1):35–44. Ware Jr JE, Davies AR. Behavioral consequences of consumer dissatisfaction with medical care. Eval Prog Plan. 1983;6(3–4):291–7. Perneger TV, Etter JF, Raetzo MA, Schaller P, Stalder H. Comparison of patient satisfaction with ambulatory visits in competing health care delivery settings in Geneva, Switzerland. J Epidemiol Comm Health. 1996;50(4):463–8. Feddock CA, Hoellein AR, Griffith 3rd CH, Wilson JF, Bowerman JL, Becker NS, Caudill TS. Can physicians improve patient satisfaction with long waiting times? Eval Health Prof. 2005;28(1):40–52. Anderson RT, Camacho FT, Balkrishnan R. Willing to wait?: the influence of patient wait time on satisfaction with primary care. BMC Health Serv Res. 2007;7:31. Street Jr RL, O’Malley KJ, Cooper LA, Haidet P. Understanding concordance in patient-physician relationships: personal and ethnic dimensions of shared identity. Ann Fam Med. 2008;6(3):198–205. Thornton RLJ, Powe NR, Roter D, Cooper LA. Patient-physician social concordance, medical visit communication and patients’ perceptions of health care quality. Pat Educ Couns. 2011;85:e201–8. Gooding TD, Newcomb L, Mertens K. Patient-centered measurement at an academic medical center. Jt Comm J Qual Improv. 1999;25(7):343–51. Conner DR. Managing at the Speed of Change. 1st ed. Ed Anonymous New York: Villard Books; 1993. p. 105–24. US Dept of Agriculture. Econ Res Service. Rural Classification. http://www. ers.usda.gov/topics/rural-economy-population/rural-classifications/what-isrural.aspx. Accessed 2016. Merriam-Webster Dictionary. Urban & Inner City. http://www.merriamwebster.com/dictionary. Accessed 2016. DiTomasso RA, Willard M. The development of a patient satisfaction questionnaire in the ambulatory setting. Fam Med. 1991;23(2):127–31. Field A. Discovering statistics using SPSS. 2nd ed. 2005. De Leon DF, Silfen SL, Wang JJ, Kamara TS, Wu WY, Shih SC. Patient experiences at primary care practices using electronic health records. J Med Pract Manage. 2012;28(3):169–76. Mol SSL, Peelen JH, Kuyvenhoven MM. Patients’ view on student participation in general practice consultations: A comprehensive review. Med Teacher. 2011;33:e397–400. Pelletier M. Client satisfaction surveys: variables to watch out for. Dimens Health Serv. 1985;62(1):37–9. Peck BM. Age-related differences in doctor-patient interaction and patient satisfaction. Curr Gerontol Geriatr Res. 2011;2011:137492–501. Rodriguez HP, Rogers WH, Marshall RE, Safran DG. The effects of primary care physician visit continuity on patients’ experiences with care. J Gen Intern Med. 2007;22(6):787–93. Submit your next manuscript to BioMed Central and we will help you at every step: • We accept pre-submission inquiries • Our selector tool helps you to find the most relevant journal • We provide round the clock customer support • Convenient online submission • Thorough peer review • Inclusion in PubMed and all major indexing services • Maximum visibility for your research Submit your manuscript at www.biomedcentral.com/submit 2 3 Quick Guide to Bivariate Statistical Tests 4 5 6 Acquisitions Editor: Christina Burns Product Development Editor: Katherine Burland Editorial Assistant: Cassie Berube Marketing Manager: Dean Karampelas Production Project Manager: Cynthia Rudy Design Coordinator: Joan Wendt Manufacturing Coordinator: Karin Duffield Prepress Vendor: Absolute Service, Inc. Tenth edition Copyright © 2017 Wolters Kluwer. Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins. Copyright © 2008, 2004, 1999 by Lippincott Williams & Wilkins. Copyright © 1995, 1991, 1987, 1983, 1978 by J. B. Lippincott Company. All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Wolters Kluwer at Two Commerce Square, 2001 Market Street, Philadelphia, PA 19103, via email at permissions@lww.com, or via our website at lww.com (products and services). 987654321 Printed in China Library of Congress Cataloging-in-Publication Data Polit, Denise F., author. Nursing research : generating and assessing evidence for nursing practice / Denise F. Polit, Cheryl Tatano Beck. — Tenth edition. p. ; cm. Includes bibliographical references and index. ISBN 978-1-4963-0023-2 I. Beck, Cheryl Tatano, author. II. Title. [DNLM: 1. Nursing Research—methods. WY 20.5] RT81.5 610.73072—dc23 7 2015033543 This work is provided “as is,” and the publisher disclaims any and all warranties, express or implied, including any warranties as to accuracy, comprehensiveness, or currency of the content of this work. This work is no substitute for individual patient assessment based on healthcare professionals’ examination of each patient and consideration of, among other things, age, weight, gender, current or prior medical conditions, medication history, laboratory data, and other factors unique to the patient. The publisher does not provide medical advice or guidance, and this work is merely a reference tool. Healthcare professionals, and not the publisher, are solely responsible for the use of this work including all medical judgments and for any resulting diagnosis and treatments. Given continuous, rapid advances in medical science and health information, independent professional verification of medical diagnoses, indications, appropriate pharmaceutical selections and dosages, and treatment options should be made and healthcare professionals should consult a variety of sources. When prescribing medication, healthcare professionals are advised to consult the product information sheet (the manufacturer’s package insert) accompanying each drug to verify, among other things, conditions of use, warnings, and side effects and identify any changes in dosage schedule or contraindications, particularly if the medication to be administered is new, infrequently used, or has a narrow therapeutic range. To the maximum extent permitted under applicable law, no responsibility is assumed by the publisher for any injury and/or damage to persons or property, as a matter of products liability, negligence law or otherwise, or from any reference to or use by any person of this work. LWW.com 8 TO Our Beloved Family: Our Husbands, Our Children (Spouses/Fiancés), and Our Grandchildren Husbands: Alan Janosy and Chuck Beck Children: Alex (Maryanna), Alaine (Jeff), Lauren (Vadim), and Norah (Chris); and Curt and Lisa Grandchildren: Cormac, Julia, Maren, and Ronan 9 Acknowledgments This 10th edition, like the previous nine editions, depended on the contribution of dozens of people. Many faculty and students who used the text have made invaluable suggestions for its improvement, and to all of you we are very grateful. In addition to all those who assisted us during the past 35 years with the earlier editions, the following individuals deserve special mention. We would like to acknowledge the comments of reviewers of the previous edition of this book, anonymous to us initially, whose feedback influenced our revisions. Faculty at Griffith University in Australia made useful suggestions and also inspired the inclusion of some new content. Valori Banfi, reference librarian at the University of Connecticut, provided ongoing assistance. Dr. Deborah Dillon McDonald was extraordinarily generous in giving us access to her NINR grant application and related material for the Resource Manual. We also extend our thanks to those who helped to turn the manuscript into a finished product. The staff at Wolters Kluwer has been of great assistance to us over the years. We are indebted to Christina Burns, Kate Burland, Cynthia Rudy, and all the others behind the scenes for their fine contributions. Finally, we thank our family and friends. Our husbands Alan and Chuck have become accustomed to our demanding schedules, but we recognize that their support involves a lot of patience and many sacrifices. 10 Reviewers Ellise D. Adams, PhD, CNM 11 Associate Professor The University of Alabama in Huntsville Huntsville, Alabama Jennifer Bellot, PhD, RN, MHSA Associate Professor and Director, DNP Program Thomas Jefferson University Philadelphia, Pennsylvania Kathleen D. Black, PhD, RNC Assistant Professor, Jefferson College of Nursing Thomas Jefferson University Philadelphia, Pennsylvania Dee Campbell, PhD, APRN, NE-BC, CNL Professor, Graduate Department Felician College, School of Nursing Lodi, New Jersey Patricia Cannistraci, DNS, RN, CNE 12 Assistant Dean 13 Excelsior College Albany, New York Julie L. Daniels, DNP, CNM 14 Assistant Professor Frontier Nursing University Hyden, Kentucky Rebecca Fountain, PhD, RN 15 Associate Professor University of Texas at Tyler Tyler, Texas Teresa S. Johnson, PhD, RN Associate Professor, College of Nursing University of Wisconsin—Milwaukee Milwaukee, Wisconsin Jacqueline Jones, PhD, RN, FAAN Associate Professor, College of Nursing University of Colorado, Anschutz Medical Campus Aurora, Colorado Mary Lopez, PhD, RN Associate Dean, Research Western University of Health Sciences Pomona, California Audra Malone, DNP, FNP-BC 16 Assistant Professor Frontier Nursing University Hyden, Kentucky Sharon R. Rainer, PhD, CRNP Assistant Professor, Jefferson College of Nursing Thomas Jefferson University Philadelphia, Pennsylvania Maria A. Revell, PhD, RN 17 Professor of Nursing Middle Tennessee State University Murfreesboro, Tennessee Stephanie Vaughn, PhD, RN, CRRN Interim Director, School of Nursing California State University, Fullerton Fullerton, California 18 Preface Research methodology is not a static enterprise. Even after writing nine editions of this book, we continue to draw inspiration and new material from groundbreaking advances in research methods and in nurse researchers’ use of those methods. It is exciting and uplifting to share many of those advances in this new edition. We expect that many of the new methodologic and technologic advances will be translated into powerful evidence for nursing practice. Five years ago, we considered the ninth edition as a watershed edition of a classic textbook. We are persuaded, however, that this 10th edition is even better. We have retained many features that made this book a classic textbook and resource, including its focus on research as a support for evidence-based nursing, but have introduced important innovations that will help to shape the future of nursing research. N E W TO T H I S E D I T I O N New Chapters We have added two new chapters on “cutting-edge” topics that are not well covered in any major research methods textbook, regardless of discipline. The first is a chapter on an issue of critical importance to health professionals and yet inadequately addressed in the nursing literature: the clinical significance of research findings. In Chapter 20, we discuss various conceptualizations of clinical significance and present methods of operationalizing those conceptualizations so that clinical significance can be assessed at both the individual and group level. We believe that this is a “must-read” chapter for nurses whose research is designed to inform clinical practice. The second new chapter in this edition concerns the design and conduct of pilot studies. In recent years, experts have written at length about the poor quality of many pilot studies. Chapter 28 provides guidance on how to develop pilot study objectives and draw conclusions about the appropriate next step—that is, whether to proceed to a full-scale study, make major revisions, or 19 abandon the project. This chapter is included in Part 5 of this book, which is devoted to mixed methods research, because pilots can benefit from both qualitative and quantitative evidence. New Content Throughout the book, we have included material on methodologic innovations that have arisen in nursing, medicine, and the social sciences during the past 4 to 5 years. The many additions and changes are too numerous to describe here, but a few deserve special mention. In particular, we have totally revised the chapters on measurement (Chapter 14) and scale development (Chapter 15) to reflect emerging ideas about key measurement properties and the assessment of newly developed instruments. The inclusion of two new chapters made it challenging to keep the textbook to a manageable length. Our solution was to move some content in the ninth edition to supplements that are available online. In fact, every chapter has an online supplement, which gave us the opportunity to add a considerable amount of new content. For example, one supplement is devoted to evidence-based methods to recruit and retain study participants. Other supplements include a description of various randomization methods, an overview of item response theory, guidance on wording proposals to conduct pilot studies, and a discussion of quality improvement studies. Following is a complete list of the supplements for the 31 chapters of this textbook: 1. The History of Nursing Research 2. Evaluating Clinical Practice Guidelines—AGREE II 3. Deductive and Inductive Reasoning 4. Complex Relationships and Hypotheses 5. Literature Review Matrices 6. Prominent Conceptual Models of Nursing Used by Nurse Researchers, and a Guide to Middle-Range Theories 7. Historical Background on Unethical Research Conduct 8. Research Control 9. Randomization Strategies 10. The RE-AIM Framework 11. Other Specific Types of Research 12. Sample Recruitment and Retention 13. Other Types of Structured Self-Reports 14. Cross-Cultural Validity and the Adaptation/Translation of Measures 15. Overview of Item Response Theory 16. SPSS Analysis of Descriptive Statistics 17. SPSS Analysis of Inferential Statistics 18. SPSS Analysis and Multivariate Statistics 19. Some Preliminary Steps in Quantitative Analysis Using SPSS 20. Clinical Significance Assessment with the Jacobson-Truax Approach 21. Historical Nursing Research 22. Generalizability and Qualitative Research 23. Additional Types of Unstructured Self-Reports 24. Transcribing Qualitative Data 25. Whittemore and Colleagues’ Framework of Quality Criteria in Qualitative Research 26. Converting Quantitative and Qualitative Data 27. 20 Complex Intervention Development: Exploratory Questions 28. Examples of Various Pilot Study Objectives 29. Publication Bias in Meta-Analyses 30. Tips for Publishing Reports on Pilot Intervention Studies 31. Proposals for Pilot Intervention Studies Another new feature of this edition concerns our interest in readers’ access to references we cited. To the extent possible, the studies we have chosen as examples of particular research methods are published as openaccess articles. These studies are identified with an asterisk in the reference list at the end of each chapter, and a link to the article is included in the Toolkit section of the Resource Manual. We hope that these revisions will help users of this book to maximize their learning experience. O R G A N I Z AT I O N O F T H E T E X T The content of this edition is organized into six main parts. • Part I—Foundations of Nursing Research and Evidence-Based Practice introduces fundamental concepts in nursing research. Chapter 1 briefly summarizes the history and future of nursing research, discusses the philosophical underpinnings of qualitative research versus quantitative research, and describes major purposes of nursing research. Chapter 2 offers guidance on utilizing research to build an evidence-based practice. Chapter 3 introduces readers to key research terms and presents an overview of steps in the research process for both qualitative and quantitative studies. • Part II—Conceptualizing and Planning a Study to Generate Evidence further sets the stage for learning about the research process by discussing issues relating to a study’s conceptualization: the formulation of research questions and hypotheses (Chapter 4), the review of relevant research (Chapter 5), the development of theoretical and conceptual contexts (Chapter 6), and the fostering of ethically sound approaches in doing research (Chapter 7). Chapter 8 provides an overview of important issues that researchers must attend to during the planning of any type of study. • Part III—Designing and Conducting Quantitative Studies to Generate Evidence presents material on undertaking quantitative nursing studies. Chapter 9 describes fundamental principles and applications of quantitative research design, and Chapter 10 focuses on methods to enhance the rigor of a quantitative study, including mechanisms of research control. Chapter 11 examines research with different and distinct purposes, including surveys, outcomes research, and evaluations. Chapter 12 presents strategies for sampling study participants in quantitative research. Chapter 13 describes using structured data collection methods that yield quantitative information. Chapter 14 discusses the concept of measurement and then focuses on methods of assessing 21 the quality of formal measuring instruments. In this edition, we describe methods to assess the properties of point-in-time measurements (reliability and validity) and longitudinal measurements—change scores (reliability of change scores and responsiveness). Chapter 15 presents material on how to develop high-quality self-report instruments. Chapters 16, 17, and 18 present an overview of univariate, bivariate, and multivariate statistical analyses, respectively. Chapter 19 describes the development of an overall analytic strategy for quantitative studies, including material on handling missing data. Chapter 20, a new chapter, discusses the issue of interpreting results and making inferences about clinical significance. • Part IV—Designing and Conducting Qualitative Studies to Generate Evidence presents material on undertaking qualitative nursing studies. Chapter 21 is devoted to research designs and approaches for qualitative studies, including material on critical theory, feminist, and participatory action research. Chapter 22 discusses strategies for sampling study participants in qualitative inquiries. Chapter 23 describes methods of gathering unstructured self-report and observational data for qualitative studies. Chapter 24 discusses methods of analyzing qualitative data, with specific information on grounded theory, phenomenologic, and ethnographic analyses. Chapter 25 elaborates on methods qualitative researchers can use to enhance (and assess) integrity and quality throughout their inquiries. • Part V—Designing and Conducting Mixed Methods Studies to Generate Evidence presents material on mixed methods nursing studies. Chapter 26 discusses a broad range of issues, including asking mixed methods questions, designing a study to address the questions, sampling participants in mixed methods research, and analyzing and integrating qualitative and quantitative data. Chapter 27 presents innovative information about using mixed methods approaches in the development of nursing interventions. In Chapter 28, a new chapter, we provide guidance for designing and conducting a pilot study and using data from the pilot to draw conclusions about how best to proceed. • Part VI—Building an Evidence Base for Nursing Practice provides additional guidance on linking research and clinical practice. Chapter 29 offers an overview of methods of conducting systematic reviews that support EBP, with an emphasis on meta-analyses, metasyntheses, and mixed studies reviews. Chapter 30 discusses dissemination of evidence—how to prepare a research report (including theses and dissertations) and how to publish research findings. The concluding chapter (Chapter 31) offers suggestions and guidelines on developing research proposals and getting financial support and includes information about applying for NIH grants and interpreting scores from NIH’s 22 new scoring system. K E Y FE AT U R E S This textbook was designed to be helpful to those who are learning how to do research as well as to those who are learning to appraise research reports critically and to use research findings in practice. Many of the features successfully used in previous editions have been retained in this 10th edition. Among the basic principles that helped to shape this and earlier editions of this book are (1) an unswerving conviction that the development of research skills is critical to the nursing profession, (2) a fundamental belief that research is intellectually and professionally rewarding, and (3) a steadfast opinion that learning about research methods need be neither intimidating nor dull. Consistent with these principles, we have tried to present the fundamentals of research methods in a way that both facilitates understanding and arouses curiosity and interest. Key features of our approach include the following: • Research Examples. Each chapter concludes with one or two actual research examples designed to highlight critical points made in the chapter and to sharpen the reader’s critical thinking skills. In addition, many research examples are used to illustrate key points in the text and to stimulate ideas for a study. Many of the examples used in this edition are open-access articles that can be used for further learning and classroom discussions. • Critiquing Guidelines. Most chapters include guidelines for conducting a critique of each aspect of a research report. These guidelines provide a list of questions that draw attention to specific aspects of a report that are amenable to appraisal. • Clear, “user-friendly” style. Our writing style is designed to be easily digestible and nonintimidating. Concepts are introduced carefully and systematically, difficult ideas are presented clearly, and readers are assumed to have no prior exposure to technical terms. • Specific practical tips on doing research. This textbook is filled with practical guidance on how to translate the abstract notions of research methods into realistic strategies for conducting research. Every chapter includes several tips for applying the chapter’s lessons to real-life situations. These suggestions are in recognition of the fact that there is often a large gap between what gets taught in research methods textbooks and what a researcher needs to know to conduct a study. • Aids to student learning. Several features are used to enhance and reinforce learning and to help focus the student’s attention on specific areas of text content, including the following: succinct, bulleted summaries at the end of each 23 chapter; tables and figures that provide examples and graphic materials in support of the text discussion; study suggestions at the end of each chapter; a detailed glossary; and a comprehensive index for accessing information quickly. T E A C H I N G – L E A R N I N G PA C K A G E Nursing Research: Generating and Assessing Evidence for Nursing Practice, 10th edition, has an ancillary package designed with both students and instructors in mind. • The Resource Manual augments the textbook in important ways. The manual itself provides students with exercises that correspond to each text chapter, with a focus on opportunities to critique actual studies. The appendix includes 12 research journal articles in their entirety, plus a successful grant application for a study funded by the National Institute of Nursing Research. The 12 reports cover a range of nursing research ventures, including qualitative, quantitative, and mixed methods studies, an instrument development study, an evidencebased practice translation project, and two systematic reviews. Full critiques of two of the reports are also included and can serve as models for a comprehensive research critique. • The Toolkit to the Resource Manual is a “must-have” innovation that will save considerable time for both students and seasoned researchers. Included on thePoint, the Toolkit offers dozens of research resources in Word documents that can be downloaded and used directly or adapted. The resources reflect bestpractice research material, most of which have been pretested and refined in our own research. The Toolkit originated with our realization that in our technologically advanced environment, it is possible to not only illustrate methodologic tools as graphics in the textbook but also to make them directly available for use and adaptation. Thus, we have included dozens of documents in Word files that can readily be used in research projects, without requiring researchers to “reinvent the wheel” or tediously retype material from this textbook. Examples include informed consent forms, a demographic questionnaire, content validity forms, and a coding sheet for a meta-analysis— to name only a few. The Toolkit also has lists of relevant and useful websites for each chapter, which can be “clicked” on directly without having to retype the URL and risk a typographical error. Links to open-access articles cited in the textbook, as well as other open-access articles relevant to each chapter, are included in the Toolkit. • The Instructor’s Resources on the Point include PowerPoint slides summarizing key points in each chapter, test questions that have been placed into a program that allows instructors to automatically generate a test, and an 24 image bank. It is our hope that the content, style, and organization of this book continue to meet the needs of a broad spectrum of nursing students and nurse researchers. We also hope that this book will help to foster enthusiasm for the kinds of discoveries that research can produce and for the knowledge that will help support an evidence-based nursing practice. DENISE F. POLIT, PhD, FAAN CHERYL TATANO BECK, DNSc, CNM, FAAN 25 26 Contents PART 1: FOUNDATIONS OF NURSING RESEARCH Chapter 1: Introduction to Nursing Research in an Evidence-Based Practice Environment Chapter 2: Evidence-Based Nursing: Translating Research Evidence into Practice Chapter 3: Key Concepts and Steps in Qualitative and Quantitative Research PART 2: CONCEPTUALIZING AND PLANNING A STUDY TO GENERATE EVIDENCE FOR NURSING Chapter 4: Research Problems, Research Questions, and Hypotheses Chapter 5: Literature Reviews: Finding and Critiquing Evidence Chapter 6: Theoretical Frameworks Chapter 7: Ethics in Nursing Research Chapter 8: Planning a Nursing Study PART 3: DESIGNING AND CONDUCTING QUANTITATIVE STUDIES TO GENERATE EVIDENCE FOR NURSING Chapter 9: Quantitative Research Design Chapter 10: Rigor and Validity in Quantitative Research Chapter 11: Specific Types of Quantitative Research Chapter 12: Sampling in Quantitative Research Chapter 13: Data Collection in Quantitative Research Chapter 14: Measurement and Data Quality Chapter 15: Developing and Testing Self-Report Scales Chapter 16: Descriptive Statistics Chapter 17: Inferential Statistics 27 Chapter 18: Multivariate Statistics Chapter 19: Processes of Quantitative Data Analysis Chapter 20: Clinical Significance and Interpretation of Quantitative Results PART 4: DESIGNING AND CONDUCTING QUALITATIVE STUDIES TO GENERATE EVIDENCE FOR NURSING Chapter 21: Qualitative Research Design and Approaches Chapter 22: Sampling in Qualitative Research Chapter 23: Data Collection in Qualitative Research Chapter 24: Qualitative Data Analysis Chapter 25: Trustworthiness and Integrity in Qualitative Research PART 5: DESIGNING AND CONDUCTING MIXED METHODS STUDIES TO GENERATE EVIDENCE FOR NURSING Chapter 26: Basics of Mixed Methods Research Chapter 27: Developing Complex Nursing Interventions Using Mixed Methods Research Chapter 28: Feasibility Assessments and Pilot Tests of Interventions Using Mixed Methods PART 6: BUILDING AN EVIDENCE BASE FOR NURSING PRACTICE Chapter 29: Systematic Reviews of Research Evidence: Meta-Analysis, Metasynthesis, and Mixed Studies Review Chapter 30: Disseminating Evidence: Reporting Research Findings Chapter 31: Writing Proposals to Generate Evidence Glossary Appendix: Statistical Tables Index 28 Check Out the Latest Book Authored by Research Expert Dr. Polit If you want to make thoughtful but practical decisions about the measurement of health constructs, check out Dr. Polit and Dr. Yang’s latest book, a “gentle” introduction to and overview of complex measurement content, called Measurement and the Measurement of Change. This book is for researchers and clinicians from all health disciplines because measurement is vital to high-quality science and to excellence in clinical practice. The text focuses on the measurement of health constructs, particularly those constructs that are not amenable to quantification by means of laboratory analysis or technical instrumentation. These health constructs include a wide range of human attributes, such as quality of life, functional ability, self-efficacy, depression, and pain. Measures of such constructs are proliferating at a rapid rate and often without adequate attention paid to ensuring that standards of scientific rigor are met. 29 In this book, the authors offer guidance to those who develop new instruments, adapt existing ones, select instruments for use in a clinical trial or in clinical practice, interpret information from measurements and changes in scores, or undertake a systematic review on instruments. This book offers guidance on how to develop new instruments using both “classical” and “modern” approaches from psychometrics as well as methods used in clinimetrics. Much of this book, however, concerns the evaluation of instruments in relation to three key measurement domains: reliability, validity, and responsiveness. This text was designed to be useful in graduate-level courses on measurement or research methods and will also serve as an important reference and resource for researchers and clinicians. 30 PART 1 FOUNDATIONS OF NURSING RESEARCH 31 1 Introduction to Nursing Research in an Evidence-Based Practice Environment 32 NURSING RESEARCH IN PERSPECTIVE In all parts of the world, nursing has experienced a profound culture change. Nurses are increasingly expected to understand and conduct research and to base their professional practice on research evidence—that is, to adopt an evidencebased practice (EBP). EBP involves using the best evidence (as well as clinical judgment and patient preferences) in making patient care decisions, and “best evidence” typically comes from research conducted by nurses and other health care professionals. What Is Nursing Research? Research is systematic inquiry that uses disciplined methods to answer questions or solve problems. The ultimate goal of research is to develop and expand knowledge. Nurses are increasingly engaged in disciplined studies that benefit nursing and its clients. Nursing research is systematic inquiry designed to generate trustworthy evidence about issues of importance to the nursing profession, including nursing practice, education, administration, and informatics. In this book, we emphasize clinical nursing research, that is, research to guide nursing practice and to improve the health and quality of life of nurses’ clients. Nursing research has experienced remarkable growth in the past three decades, providing nurses with a growing evidence base from which to practice. Yet many questions endure and much remains to be done to incorporate research innovations into nursing practice. Examples of Nursing Research Questions: • How effective is pressurized irrigation, compared to a swabbing method, in cleansing wounds, in terms of time to wound healing, pain, patients’ satisfaction with comfort, and costs? (Mak et al., 2015) • What are the experiences of women in Zimbabwe who are living with advanced HIV infection? (Gona & DeMarco, 2015) The Importance of Research in Nursing Research findings from rigorous studies provide especially strong evidence for informing nurses’ decisions and actions. Nurses are accepting the need to base specific nursing actions on research evidence indicating that the actions are clinically appropriate, cost-effective, and result in positive outcomes for clients. In the United States, research plays an important role in nursing in terms of cred 33 entialing and status. The American Nurses Credentialing Center (ANCC)—an arm of the American Nurses Association and the largest and most prestigious credentialing organization in the United States—developed a Magnet Recognition Program to acknowledge health care organizations that provide high-quality nursing care. As Reigle and her colleagues (2008) noted, “the road to Magnet Recognition is paved with EBP” (p. 102) and the 2014 Magnet application manual incorporated revisions that strengthened evidence-based requirements (Drenkard, 2013). The good news is that there is growing confirmation that the focus on research and evidence-based practice may have important payoffs. For example, McHugh and co-researchers (2013) found that Magnet hospitals have lower riskadjusted mortality and failure to rescue than non-Magnet hospitals, even when differences among the hospitals in nursing credentials and patient characteristics are taken into account. Changes to nursing practice now occur regularly because of EBP efforts. Practice changes often are local initiatives that are not publicized, but broader clinical changes are also occurring based on accumulating research evidence about beneficial practice innovations. Example of Evidence-Based Practice: Numerous clinical practice changes reflect the impact of research. For example, “kangaroo care” (the holding of diaper-clad infants skin to skin by parents) is now practiced in many neonatal intensive care units (NICUs), but this is a relatively new trend. As recently as the 1990s, only a minority of NICUs offered kangaroo care options. Expanded adoption of this practice reflects mounting evidence that early skin-to-skin contact has benefits without negative side effects (e.g., Ludington-Hoe, 2011; Moore et al., 2012). Some of that evidence came from rigorous studies conducted by nurse researchers in several countries (e.g., Chwo et al., 2002; Cong et al., 2009; Cong et al., 2011; Hake-Brooks & Anderson, 2008). Nurses continue to study the potential benefits of kangaroo care in important clinical trials (e.g., Campbell-Yeo et al., 2013). The Consumer–Producer Continuum in Nursing Research In our current environment, all nurses are likely to engage in activities along a continuum of research participation. At one end of the continuum are consumers of nursing research, who read research reports or research summaries to keep up-to-date on findings that might affect their practice. EBP depends on well-informed nursing research consumers. At the other end of the continuum are the producers of nursing research: nurses who design and conduct research. At one time, most nurse researchers were 34 academics who taught in schools of nursing, but research is increasingly being conducted by nurses in health care settings who want to find solutions to recurring problems in patient care. Between these end points on the continuum lie a variety of research activities that are undertaken by nurses. Even if you never personally undertake a study, you may (1) contribute to an idea or a plan for a clinical study; (2) gather data for a study; (3) advise clients about participating in research; (4) solve a clinical problem by searching for research evidence; or (5) discuss the implications of a new study in a journal club in your practice setting, which involves meetings (in groups or online) to discuss research articles. In all possible research001-related activities, nurses who have some research skills are better able than those without them to make a contribution to nursing and to EBP. An understanding of nursing research can improve the depth and breadth of every nurse’s professional practice. Nursing Research in Historical Perspective Table 1.1 summarizes some of the key events in the historical evolution of nursing research. (An expanded summary of the history of nursing research appears in the Supplement to this chapter on ). 35 Most people would agree that research in nursing began with Florence Nightingale in the 1850s. Her most well-known research contribution involved an analysis of factors affecting soldier mortality and morbidity during the Crimean War. Based on skillful analyses, she was successful in effecting changes in nursing care and, more generally, in public health. After Nightingale’s work, research was absent from the nursing literature until the early 1900s, but most early studies concerned nurses’ education rather than clinical issues. In the 1950s, research by nurses began to accelerate. For example, a nursing research center was established at the Walter Reed Army Institute of Research. Also, the American Nurses Foundation, which is devoted to the promotion of nursing research, was founded. The surge in the number of studies conducted in the 1950s created the need for a new journal; Nursing Research came into being in 1952. As shown in Table 1.1, dissemination opportunities in professional journals grew steadily thereafter. In the 1960s, nursing leaders expressed concern about the shortage of research 36 on practice issues. Professional nursing organizations, such as the Western Interstate Council for Higher Education in Nursing, established research priorities, and practice-oriented research on various clinical topics began to emerge in the literature. During the 1970s, improvements in client care became a more visible research priority and nurses also began to pay attention to the clinical utilization of research findings. Guidance on assessing research for application in practice settings became available. Several journals that focus on nursing research were established in the 1970s, including Advances in Nursing Science, Research in Nursing & Health, and the Western Journal of Nursing Research. Nursing research also expanded internationally. For example, the Workgroup of European Nurse Researchers was established in 1978 to develop greater communication and opportunities for partnerships among 25 European National Nurses Associations. Nursing research continued to expand in the 1980s. In the United States, the National Center for Nursing Research (NCNR) at the National Institutes of Health (NIH) was established in 1986. Several forces outside of nursing also helped to shape the nursing research landscape. A group from the McMaster Medical School in Canada designed a clinical learning strategy that was called evidence-based medicine (EBM). EBM, which promulgated the view that research findings were far superior to the opinions of authorities as a basis for clinical decisions, constituted a profound shift for medical education and practice, and has had a major effect on all health care professions. Nursing research was strengthened and given more visibility when NCNR was promoted to full institute status within the NIH. In 1993, the National Institute of Nursing Research (NINR) was established, helping to put nursing research more into the mainstream of health research. Funding opportunities for nursing research expanded in other countries as well. Current and Future Directions for Nursing Research Nursing research continues to develop at a rapid pace and will undoubtedly flourish in the 21st century. Funding continues to grow. For example, NINR funding in fiscal year 2014 was more than $140 million compared to $70 million in 1999—and the competition for available funding is increasingly vigorous as more nurses seek support for testing innovative ideas for practice improvements. Broadly speaking, the priority for future nursing research will be the promotion of excellence in nursing science. Toward this end, nurse researchers and practicing nurses will be sharpening their research skills and using those skills to address 37 emerging issues of importance to the profession and its clientele. Among the trends we foresee for the early 21st century are the following: • Continued focus on EBP. Encouragement for nurses to engage in evidence-based patient care is sure to continue. In turn, improvements will be needed both in the quality of studies and in nurses’ skills in locating, understanding, critiquing, and using relevant study results. Relatedly, there is an emerging interest in translational research— research on how findings from studies can best be translated into practice. Translation potential will require researchers to think more strategically about long-term feasibility, scalability, and sustainability when they test solutions to problems. • Development of a stronger evidence base through confirmatory strategies. Practicing nurses are unlikely to adopt an innovation based on weakly designed or isolated studies. Strong research designs are essential, and confirmation is usually needed through the replication (i.e., the repeating) of studies with different clients, in different clinical settings, and at different times to ensure that the findings are robust. • Greater emphasis on systematic reviews. Systematic reviews are a cornerstone of EBP and will take on increased importance in all health disciplines. Systematic reviews rigorously integrate research information on a topic so that conclusions about the state of evidence can be reached. Best practice clinical guidelines typically rely on such systematic reviews. • Innovation. There is currently a major push for creative and innovative solutions to recurring practice problems. “Innovation” has become an important buzzword throughout NIH and in nursing associations. For example, the 2013 annual conference of the Council for the Advancement of Nursing Science was “Innovative Approaches to Symptom Science.” Innovative interventions—and new methods for studying nursing questions—are sure to be part of the future research landscape in nursing. • Expanded local research in health care settings. Small studies designed to solve local problems will likely increase. This trend will be reinforced as more hospitals apply for (and are recertified for) Magnet status in the United States and in other countries. Mechanisms will need to be developed to ensure that evidence from these small projects becomes available to others facing similar problems, such as communication within and between regional nursing research alliances. • Strengthening of interdisciplinary collaboration. Collaboration of nurses with researchers in related fields is likely to expand in the 21st century as researchers address fundamental health care problems. In turn, such collaborative efforts 38 could lead to nurse researchers playing a more prominent role in national and international health care policies. One of four major recommendations in a 2010 report on the future of nursing by the Institute of Medicine was that nurses should be full partners with physicians and other health care professionals in redesigning health care. • Expanded dissemination of research findings. The Internet and other electronic communication have a big impact on disseminating research information, which in turn helps to promote EBP. Through technologic advances, information about innovations can be communicated more widely and more quickly than ever before. • Increased focus on cultural issues and health disparities. The issue of health disparities has emerged as a central concern in nursing and other health disciplines; this in turn has raised consciousness about the cultural sensitivity of health interventions and the cultural competence of health care workers. There is growing awareness that research must be sensitive to the health beliefs, behaviors, and values of culturally and linguistically diverse populations. • Clinical significance and patient input. Research findings increasingly must meet the test of being clinically significant, and patients have taken center stage in efforts to define clinical significance. A major challenge in the years ahead will involve getting both research evidence and patient preferences into clinical decisions, and designing research to study the process and the outcomes. Broad research priorities for the future have been articulated by many nursing organizations, including NINR and Sigma Theta Tau International. Expert panels and research working groups help NINR to identify gaps in current knowledge that require research. The primary areas of research funded by NINR in 2014 were health promotion/disease prevention, eliminating health disparities, caregiving, symptom management, and self-management. Research priorities that have been expressed by Sigma Theta Tau International include advancing healthy communities through health promotion; preventing disease and recognizing social, economic, and political determinants; implementation of evidence-based practice; targeting the needs of vulnerable populations such as the poor and chronically ill; and developing nurses’ capacity for research. Priorities also have been developed for several nursing specialties and for nurses in several countries—for example, Ireland (Brenner et al., 2014; Drennan et al., 2007), Sweden (Bäck-Pettersson et al., 2008), Australia (Wynaden et al., 2014), and Korea (Kim et al., 2002). S O U R C E S O F E V I D E N C E FO R N U R S I N G PR A C T I C E Nurses make clinical decisions based on knowledge from many sources, including 39 coursework, textbooks, and their own clinical experience. Because evidence is constantly evolving, learning about best practice nursing perseveres throughout a nurse’s career. Some of what nurses learn is based on systematic research, but much of it is not. What are the sources of evidence for nursing practice? Where does knowledge for practice come from? Until fairly recently, knowledge primarily was handed down from one generation to the next based on experience, trial and error, tradition, and expert opinion. Information sources for clinical practice vary in dependability, giving rise to what is called an evidence hierarchy, which acknowledges that certain types of evidence are better than others. A brief discussion of some alternative sources of evidence shows how research001-based information is different. Tradition and Authority Decisions are sometimes based on custom or tradition. Certain “truths” are accepted as given, and such “knowledge” is so much a part of a common heritage that few seek verification. Tradition facilitates communication by providing a common foundation of accepted truth, but many traditions have never been evaluated for their validity. There is concern that some nursing interventions are based on tradition, custom, and “unit culture” rather than on sound evidence. Indeed, a recent analysis suggests that some “sacred cows” (ineffective traditional habits) persist even in a health care center recognized as a leader in evidence-based practice (Hanrahan et al., 2015). Another common source of information is an authority, a person with specialized expertise. We often make decisions about problems with which we have little experience; it seems natural to place our trust in the judgment of people with specialized training or experience. As a source of evidence, however, authority has shortcomings. Authorities are not infallible, particularly if their expertise is based primarily on personal experience; yet, like tradition, their knowledge often goes unchallenged. Example of “Myths” in Nursing Textbooks: A study suggests that even nursing textbooks may contain “myths.” In their analysis of 23 widely used undergraduate psychiatric nursing textbooks, Holman and colleagues (2010) found that all books contained at least one unsupported assumption (myth) about loss and grief—that is, assumptions not supported by research evidence. Moreover, many evidence-based findings about grief and loss failed to be included in the textbooks. Clinical Experience, Trial and Error, and Intuition Clinical experience is a familiar, functional source of knowledge. The ability to 40 generalize, to recognize regularities, and to make predictions is an important characteristic of the human mind. Nevertheless, personal experience is limited as a knowledge source because each nurse’s experience is too narrow to be generally useful. A second limitation is that the same objective event is often experienced and perceived differently by two nurses. A related method is trial and error in which alternatives are tried successively until a solution to a problem is found. We likely have all used this method in our professional work. For example, many patients dislike the taste of potassium chloride solution. Nurses try to disguise the taste of the medication in various ways until one method meets with the approval of the patient. Trial and error may offer a practical means of securing knowledge, but the method tends to be haphazard and solutions may be idiosyncratic. Intuition is a knowledge source that cannot be explained based on reasoning or prior instruction. Although intuition and hunches undoubtedly play a role in nursing—as they do in the conduct of research—it is difficult to develop nursing policies and practices based on intuition. Logical Reasoning Solutions to some problems are developed by logical thought processes. As a problem-solving method, logical reasoning combines experience, intellectual faculties, and formal systems of thought. Inductive reasoning involves developing generalizations from specific observations. For example, a nurse may observe the anxious behavior of (specific) hospitalized children and conclude that (in general) children’s separation from their parents is stressful. Deductive reasoning involves developing specific predictions from general principles. For example, if we assume that separation anxiety occurs in hospitalized children (in general), then we might predict that (specific) children in a hospital whose parents do not room-in will manifest symptoms of stress. Both systems of reasoning are useful for understanding and organizing phenomena, and both play a role in research. Logical reasoning in and of itself, however, is limited because the validity of reasoning depends on the accuracy of the premises with which one starts. Assembled Information In making clinical decisions, health care professionals rely on information that has been assembled for a variety of purposes. For example, local, national, and international benchmarking data provide information on such issues as infection rates or the rates of using various procedures (e.g., cesarean births) and can 41 facilitate evaluations of clinical practices. Cost data—information on the costs associated with certain procedures, policies, or practices—are sometimes used as a factor in clinical decision making. Quality improvement and risk data, such as medication error reports, can be used to assess the need for practice changes. Such sources are useful, but they do not provide a good mechanism for determining whether improvements in patient outcomes result from their use. Disciplined Research Research conducted in a disciplined framework is the most sophisticated method of acquiring knowledge. Nursing research combines logical reasoning with other features to create evidence that, although fallible, tends to yield the most reliable evidence. Carefully synthesized findings from rigorous research are at the pinnacle of most evidence hierarchies. The current emphasis on EBP requires nurses to base their clinical practice to the greatest extent possible on rigorous research001-based findings rather than on tradition, authority, intuition, or personal experience— although nursing will always remain a rich blend of art and science. PA R A D I G M S A N D M E T H O D S FO R N U R S I N G RESEARCH A paradigm is a worldview, a general perspective on the complexities of the world. Paradigms for human inquiry are often characterized in terms of the ways in which they respond to basic philosophical questions, such as, What is the nature of reality? (ontologic) and What is the relationship between the inquirer and those being studied? (epistemologic). Disciplined inquiry in nursing has been conducted mainly within two broad paradigms, positivism and constructivism. This section describes these two paradigms and outlines the research methods associated with them. In later chapters, we describe the transformative paradigm that involves critical theory research (Chapter 21), and a pragmatism paradigm that involves mixed methods research (Chapter 26). The Positivist Paradigm The paradigm that dominated nursing research for decades is known as positivism (also called logical positivism). Positivism is rooted in 19th century thought, guided by such philosophers as Mill, Newton, and Locke. Positivism reflects a broader cultural phenomenon that, in the humanities, is referred to as modernism, which emphasizes the rational and the scientific. As shown in Table 1.2, a fundamental assumption of positivists is that there is a reality out there that can be studied and known (an assumption is a basic principle 42 that is believed to be true without proof or verification). Adherents of positivism assume that nature is basically ordered and regular and that reality exists independent of human observation. In other words, the world is assumed not to be merely a creation of the human mind. The related assumption of determinism refers to the positivists’ belief that phenomena are not haphazard but rather have antecedent causes. If a person has a cerebrovascular accident, the researcher in a positivist tradition assumes that there must be one or more reasons that can be potentially identified. Within the positivist paradigm, much research activity is directed at understanding the underlying causes of phenomena. Positivists value objectivity and attempt to hold personal beliefs and biases in check to avoid contaminating the phenomena under study. The positivists’ scientific approach involves using orderly, disciplined procedures with tight controls of the research situation to test hunches about the phenomena being studied. Strict positivist thinking has been challenged, and few researchers adhere to the 43 tenets of pure positivism. In the postpositivist paradigm, there is still a belief in reality and a desire to understand it, but postpositivists recognize the impossibility of total objectivity. They do, however, see objectivity as a goal and strive to be as neutral as possible. Postpositivists also appreciate the impediments to knowing reality with certainty and therefore seek probabilistic evidence—that is, learning what the true state of a phenomenon probably is, with a high degree of likelihood. This modified positivist position remains a dominant force in nursing research. For the sake of simplicity, we refer to it as positivism. The Constructivist Paradigm The constructivist paradigm (often called the naturalistic paradigm) began as a countermovement to positivism with writers such as Weber and Kant. Just as positivism reflects the cultural phenomenon of modernism that burgeoned after the industrial revolution, naturalism is an outgrowth of the cultural transformation called postmodernism. Postmodern thinking emphasizes the value of deconstruction—taking apart old ideas and structures—and reconstruction—putting ideas and structures together in new ways. The constructivist paradigm represents a major alternative system for conducting disciplined research in nursing. Table 1.2 compares the major assumptions of the positivist and constructivist paradigms. For the naturalistic inquirer, reality is not a fixed entity but rather is a construction of the individuals participating in the research; reality exists within a context, and many constructions are possible. Naturalists thus take the position of relativism: If there are multiple interpretations of reality that exist in people’s minds, then there is no process by which the ultimate truth or falsity of the constructions can be determined. The constructivist paradigm assumes that knowledge is maximized when the distance between the inquirer and those under study is minimized. The voices and interpretations of study participants are crucial to understanding the phenomenon of interest, and subjective interactions are the primary way to access them. Findings from a constructivist inquiry are the product of the interaction between the inquirer and the participants. Paradigms and Methods: Quantitative and Qualitative Research Research methods are the techniques researchers use to structure a study and to gather and analyze information relevant to the research question. The two alternative paradigms correspond to different 44 methods for developing evidence. A key methodologic distinction is between quantitative research, which is most closely allied with positivism, and qualitative research, which is associated with constructivist inquiry—although positivists sometimes undertake qualitative studies, and constructivist researchers sometimes collect quantitative information. This section provides an overview of the methods associated with the two paradigms. The Scientific Method and Quantitative Research The traditional, positivist scientific method refers to a set of orderly, disciplined procedures used to acquire information. Quantitative researchers use deductive reasoning to generate predictions that are tested in the real world. They typically move in a systematic fashion from the definition of a problem and the selection of concepts on which to focus to the solution of the problem. By systematic, we mean that the investigator progresses logically through a series of steps, according to a specified plan of action. Quantitative researchers use various control strategies. Control involves imposing conditions on the research situation so that biases are minimized and precision and validity are maximized. Control mechanisms are discussed at length in this book. Quantitative researchers gather empirical evidence—evidence that is rooted in objective reality and gathered through the senses. Empirical evidence, then, consists of observations gathered through sight, hearing, taste, touch, or smell. Observations of the presence or absence of skin inflammation, patients’ anxiety level, or infant birth weight are all examples of empirical observations. The requirement to use empirical evidence means that findings are grounded in reality rather than in researchers’ personal beliefs. Evidence for a study in the positivist paradigm is gathered according to an established plan, using structured methods to collect needed information. Usually (but not always) the information gathered is quantitative—that is, numeric information that is obtained from a formal measurement and is analyzed statistically. A traditional scientific study strives to go beyond the specifics of a research situation. For example, quantitative researchers are typically not as interested in understanding why a particular person has a stroke as in understanding what factors influence its occurrence in people generally. The degree to which research 45 findings can be generalized to individuals other than those who participated in the study is called the study’s generalizability. The scientific method has enjoyed considerable stature as a method of inquiry and has been used productively by nurse researchers studying a range of nursing problems. This is not to say, however, that this approach can solve all nursing problems. One important limitation—common to both quantitative and qualitative research—is that research cannot be used to answer moral or ethical questions. Many persistent, intriguing questions about human beings fall into this area— questions such as whether euthanasia should be practiced or abortion should be legal. The traditional resear…
Purchase answer to see full attachment

Reflection essay

Reflection essay

Reflection: With minimal guidance demonstrate cultural competence in nursing practice among diverse populations in a variety of contexts to ensure culturally safe care.

ORDER A PLAGIARISM FREE PAPER NOW

Please write reflection on mention above and has to be one page double space. No Reference or incitation needed. Please check spelling and grammar and no plagiarism.

Academy for Practical Nursing and Health Occupations Evidence-Based Approach

Academy for Practical Nursing and Health Occupations Evidence-Based Approach

 

1——-Two barriers that can affect the long-term outcomes of an evidence-based project are (1) the lack of ongoing training and monitoring of the new practice change, and (2) not setting goals or rewarding staff for meeting time lines for the practice change. In order to overcome these barriers, the change agent needs to have clear policies and procedures in place for the new practice change. Ongoing training, especially for new staff, will be needed until the change becomes part of the normal workflow. This is often seen at Indian Health Council, when there are changes to workflows in the electronic health record. Staff can go back to the old way of doing things if they are not monitored, because they tend to be more comfortable with the old way of doing things. The change agent needs to be present to answer questions, and to make changes if the new practice project needs to be changed in any way. According to Cherry (2017), the person who is leading the change needs to be “…available to help, support, and encourage others through the process” (p. 311).

Setting clear goals allows staff to know what they are working to achieve. Small rewards can be given, for example, an ice cream or pizza party, or certificates with balloons can help staff feel recognized for their hard work. “Leadership strategies of positive feedback, encouragement, and constructive criticism reinforce new behavior” (Garon, 2014, p. 41). Once goals are met, then the new practice should still be monitored to make sure staff are compliant with the new changes. Sometimes events or changes happen in a department, and these changes may affect the evidence-based practice, so policies and procedures may need to be revised. According to Cherry (2017), the person who is making the changes should evaluate “… the change, and make modifications if necessary” (p. 311). Sometimes performing a pilot project over a few months can help the change agent fine tune a new procedure or protocol before it is rolled out to the whole department. This can alleviate stress, and help support a change, especially if the project is making improvements in patient care or the department.

When looking at this nurse’s evidence-based project, it will be important to train on screening tools, and when to call for a brief intervention, which may include training nurses on providing a brief intervention if the provider or behavioral health counselor is not available. For SBIRT (screening, brief intervention, and referral to treatment) to be effective, staff must screen accurately and provide a brief intervention. Goals should be set to increase the number of SBIRT interventions by at least 50% within the next six months. The nurse can monitor the number of positive screenings and see how many brief interventions are completed over the next six months. Staff need to be updated every month, so they can meet their goals and know how the department is doing. Once the goal is reached, then a new and higher goal can be set. The staff should be rewarded once they reach their goals, so that they take ownership of the project and continue to support the practice change.

2—-Sustaining change can be one of the most challenging topics related to the long term success of any project. It’s an unfortunate truth that up to 33% of quality improvement projects are not sustained after the first year of completion (Silver, et al,2016) Through my capstone project, I feel I have incorporated blood, sweat, and tears and thus I have a very personal interest in the project’s success. The reality of this is that I can’t be the only one that makes this project successful; rather, it must be a team effort. Therefore, I recognize that I must demonstrate a good understanding of why the project is needed in order to create a vested interest in its long term success. This brings me to my first barrier, which is sustainability after the initial enthusiasm or rationale of the work has dissipated. I plan on overcoming this by maintaining focus on our objective; to keep patients healthy. I plan on doing this by reporting out monthly data on how many patients our department made contact with and of those, how many remained out of the hospital following 30-day post discharge. With this effort, I hope to continue to spotlight the work we are achieving and why the extra effort is needed.

Another anticipated barrier is how to incorporate standardization across the department. Mate (2016) identifies that incorporating clear guidelines and accountability will work to support sustained improvement. I plan on overcoming this barrier by creating standardized guidelines and expectations of the workflow. My intention for this effort would be to clearly acknowledge the goals of the project and what each team member is responsible for in order to achieve our collective goal. Furthermore, this guide would help ensure that new staff are also aware of the project and what is expected of them and why.

I know that with continued effort this project has a great potential to positively influence patients’ lives. This post recognizes that just because we are nearing the completion of our capstone project doesn’t mean that the work is done. We will need to maintain communication and continue to overcome barriers in order to ensure it’s continued success.

3——–Different barriers hinder the implementation of change proposal in a health care facility. The two potential barriers which might prevent EBP from changing proposal which in turn leads to less desired results as compared to results six months from now on include;

  • Access to information and organizational support
  • Unavailability of necessary equipment in the hospital for patient monitoring and care to prevent unforeseen cases of the pressure of ulcers.

According to a new national survey of more than 1,000 RNs suggests that resistance from nursing leaders and lack of organizational support prevent nurses from implementing evidence-based practices that improve patient outcomes (LoBiondo-Wood, & Haber, 2014). Pressure ulcers remain the chief complications of prolonged hospitalization, specifically in situations of poor nutrition, increased moisture on the skin (e.g., incontinence), prolonged pressure, and compromised sensory stimuli. Pressure ulcers increase the cost of hospitalization, increase patient morbidity and mortality, and play a significant role in the spread of infection in the clinical area. Although there is measure to prevent the prevalent cases of the pressure of ulcers, the major problem with the implementation of the change proposal is lack of organizational support and access to information and necessary equipment. Organizational support plays a major role in the implementation process, in fact, leaders and managers are important sources of communication. Their expressed support for improving pressure ulcer prevention will reinforce its importance and thus increase the impetus among staff to adhere to the new practices. However, when this support from the leaders is lacking, it becomes difficult to adhere to the practices that are supposed to prevent the pressure of ulcers. This is a barrier I have experienced, and I have heard colleagues complain about (Mwebaza et al., 2014).

ORDER A PLAGIARISM FREE PAPER NOW

To overcome the barriers, clarifying the roles of the implementation team as well as unit champions for the implementation period is very crucial. Also, communication with the managers and updating of the progress of the change proposal keeps them informed, in fact, engaging them can make them feel like part of the change proposal hence contributing ideas necessary to facilitate the implementation of the EBP. Finally, management engagement can similarly help to realize any equipment, tools, or machines that are necessary yet lacking in the implementation of the change proposal. Although these strategies can help overcome the barriers stated above, personal efforts in addressing the barriers and follow-up are equally important in accelerating the implementation of the

MN580 Primary Care of children and Adolescence Health

MN580 Primary Care of children and Adolescence Health

Description

 

Need below DQ done 300 words APA format no cover needed,, I have started it and included references. Need 3 references with citation Topic is in bold below

Topic 1: Pain Management, Palliative Care, Metabolic, Endocrine, Genetic, and Chronic Conditions and Management Plans

This week, there will be a variety of conditions assigned to you by your instructor pertaining to metabolic, endocrine, genetic, and chronic conditions. You are expected to present your initial topic including, but not limited to, the following items:

  • Pathophysiology
  • Epidemiology
  • Physical exam findings
  • Differential diagnoses and rationale
  • Management plan to include diagnostic testing, medications if applicable, follow-up plans and referrals if needed

In addition, you are required to follow the Discussion Board grading rubric and respond to at least three of your classmates. Topics may include:

    1. Neurofibromatosis

ORDER  A PLAGIARISM FREE PAPER  NOW

Neurofibromatosis

 

Physical exam findings t

he earliest clinical finding usually seen in children with NF1 is multiple café-au-lait spots. These may be present at birth or may appear over time, frequently increasing in size and number throughout childhood Subcutaneous or cutaneous neurofibromas are seen rarely in young children but appear over time in older children, adolescents, and adults. MN580 Primary Care of children and Adolescence Health

Differential diagnoses and rationale

Management plan to include diagnostic testing, medications if applicable, follow-up plans and referrals if needed

 

Pathophysiology

The pathophysiology of a neurofibromatosis consists of a protein called the NF1 gene. This protein is known to suppress tumors and serves as a signal regulator or cell proliferation and differentiation. When this protein/gene is interfered with a dysfunction takes place and can affect the regulation and cause uncontrolled cell proliferation. The Schwann cells in neurofibroma’s have a nutation in the NF1 alleles. (Amy (July 2009).)

Epidemiology

According to the “Primary Central Nervous System” (Patrick Y. December, 2016), NF1 occurs in 1 in 3000 individuals and is equally prevalent among men and women and is the most common inherited nervous system disorders and those whom are affected have a reduced life expectancy by 10-15 years than the average person.

 

 

 

Boyd, Kevin P.; Korf, Bruce R.; Theos, Amy (July 2009). “Neurofibromatosis type 1”. Journal of the American Academy of Dermatology. 61 (1): 1–14. doi:10.1016/j.jaad.2008.12.051. PMC 2716546. PMID 19539839.

Norden, Andrew D.; Reardon, David A.; Wen, Patrick Y. (16 December 2010). Primary Central Nervous System Tumors: Pathogenesis and Therapy. Springer Science & Business Media. p. 459. ISBN 9781607611660. Archived from the original on 10 June 2016.

Ferner, R. E., Huson, S. M., Thomas, N., Moss, C., Willshaw, H., Evans, D. G., … Kirby, A. (2007). Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. Journal of medical genetics, 44(2), 81–88. doi:10.1136/jmg.2006.045906

Molecular diagnosis as a strategy for differential diagnosis and at early ages of neurofibromatosis type 1 (NF1)].Gómez M, Batista O.Rev Med Chil. 2015 Oct;143(10):1320-30. doi: 10.4067/S0034-98872015001000011. R. MN580 Primary Care of children and Adolescence Health

https://www.ncbi.nlm.nih.gov/pubmed/23656349

Conditions of Coverage to Different Types of Health Care Organizations Paper

Conditions of Coverage to Different Types of Health Care Organizations Paper

Description

There are common overarching standards in health care regulation, but there are important differences depending on the practice setting. This assignment is designed to familiarize you with conditions of coverage and participation specific to different types of health care organizations.

Choose 2 different practice settings: one that represents where you currently work or have worked, and another that you are interested in exploring.

ORDER  A PLAGIARISM FREE PAPER  NOW

Examine the similarities and differences in conditions of coverage and participation related to your 2 chosen factors. Consider the following:

  • Staffing requirements
  • Release of patient records
  • Patient rights
  • Administrative structure
  • Another aspect relative to the specific care environment

Cite at least 3 peer-reviewed sources published within the last 5 years. Conditions of Coverage to Different Types of Health Care Organizations Paper

Format your assignment as one of the following:

  • 18- to 20-slide presentation
  • 15- to 20-minute oral presentation
  • 875-word paper
  • Another format approved by your instructor

Include an APA-formatted reference list. Conditions of Coverage to Different Types of Health Care Organizations Paper

HCA340 Harvard University Managing in Health & Human Services Article

HCA340 Harvard University Managing in Health & Human Services Article

Description

 

Discipline:

Medicine and Health

Type of service:
Article Review

Spacing:
Double spacing

Paper format:
APA

Number of pages:
18 pages

Number of sources:
10 sources

Paper detalis:

REVISION

I have attached everything the author needs to make this paper a success, including but not limited to, syllabus and grading criteria. It is imperative the writer follows each specific instruction since the school is very picky and can denied the paper for any reason that was mandated but not followed in the paper. The form attached RLRA 2, is my hypothesis proposal along with 10 article references. If the author wishes, he/she can also add sources that he/she deemed relevant provided they follow the criteria set forth by the school regarding sources, the article review must compare minimum 10 articles.
The writer has to compare and contrast the articles’ methods, results, and discussions. When in doubt refer to the syllabus and “guide to authors” forms uploaded. I prefer the writer takes it’s time if the instructions are followed to perfection. Any questions please dont hesitate to reach out.  HCA340 Harvard University Managing in Health & Human Services Article

Revision Instructions

One of the primary sources “Leadbetter et al” was not cited, i dont know if it was not included in the paper or the author forgot to cite it. The results states there were 5 articles compared but Leadbetter is missing.

Page 2= Under Conclusion

-“can serve as a superior alternative to traditional autopsies for a while a post-in a neonate or fetus”, if you can change “for a while” and don’t understand what is meant by a “post-in a neonate or fetus”, if you can please word it differently.

Page 3= Introduction , first paragraph

-Starting from “It remains” and the rest of the paragraph should be worded differently to avoid phrases like “at all time devastating” , “a post is a source of this info” and “prior decisions during the last legs of the deceased”. I felt this paragraph was not written clearly.

Page 5= figure quoting 88 percent to 96 percent in still births against…” if you can please include from what article it was obtained.

Page 14= under subheading “acceptability of virtual autopsy”

-if you can change the wording on “positively concerning singleton”, fix non-moslem mother, and clarify “earlier gestation at delivery or TOP, and a maternal”
-Under the same section: the statistic of ” thirty three fetuses and the one that follows beneath of “scores greater than 80” have no citation. Also words like “infected or defected” if you can please change or clarify what is meant by that.

Page 14 under “discussion”

-first sentenced “cash earlier stated” dont know what is meant by that.

-I believe the writer explained my limitations in conducting this review instead of explaining the limitations and weaknesses of the studies examined under results. HCA340 Harvard University Managing in Health & Human Services Article

-also under discussion pg 14-15, the facts regarding hepatic iron and free air detection= no citation.

Page 16= top of page if the author can explain what T1 and T2 means.

Page 16= under subheading ” the results of this study confirm the research hypothesis”

-if you can change/clarify what is meant by “showed the rite of an autopsy”

Overall, minor details of spelling/grammar like in pg. 2 article instead of author, pg. 5 paediatry and supperior in the pages heading. If you can please just look over the paper in case there are others i did not catch.

ORDER  A PLAGIARISM FREE PAPER  NOW

1-Under data search heading:
This is a bit vague. the search for articles would have to be fully replicable in case the committee wants to go search for the articles– describe the search and so, anyone else would be able to go through your steps and come up with exactly the same articles that you ended up with. if you really have to mention all the databases to capture all the searches, then that’s fine. This just matters a bit more because I only have 5 papers in my results, the committee will have to be very convinced that I have found all of the papers related to my hypothesis. If you have found more that is relevant please feel free to include them
The sentence that include the general terms search, It would be better to give the string (with MeSH terms, etc.) that you used in pubmed. Or if you had several strings, use that.

2-Under inclusion/exclusion criteria: In general, dates should be a sharp cutoff. Saying things like “a high chance” makes your choice to include something sound subjective.

3-Under data validity: did you actually exclude any of the studies based on these criteria? If not, leave this out.

4- The data analysis section is not required, you can take it out

5-Under Results: for the two comparison studies, I would avoid describing two studies together like this. Do them one at a time. That way you can make sure that you give a full description for each study. You should say more about the study design. Did they do both perform virtual and traditional autopsy on all 400? Were there any comparison groups? How were the subjects selected? Also get rid of the table, your results all need to be explained in standard sentences in paragraphs.

6-Under Agreement between Traditional Autopsy and Virtual Autopsy Results: when talking about 58 to 60 percent..This is a good example of a section of results that has numerical results (the percent agreement) but no measure of statistical significance. One might find a p value, or confidence intervals, or even a kappa test. If nothing is reported, then you should also say that the authors reported no measure of statistical significance. HCA340 Harvard University Managing in Health & Human Services Article

7-At the end of the same paragraph, where PM-MRI is better…see if you can find numerical results (along with measures of statistical significance). So when you say PM-MRI is superior in hepatic iron overload, give the numeric value (e.g. percent correct) for PM-MRI and for the comparison, and then a measure of statistical significance, to further support the idea that is better.

8- For the results section: To summarize, what you need to do in the results, is focus just on one study at a time. Introduce the study. Then describe its design – the subjects, number, comparison groups, recruitment, and what was done to all subjects. Then describe the results, including bother the numerical result and measures of statistical significance. Then move on to the next study and do the same thing… HCA340 Harvard University Managing in Health & Human Services Article

 

 

Walden University Effectiveness and Impact of Leadership Skills Paper

Walden University Effectiveness and Impact of Leadership Skills Paper

Description

Leadership

Students will:

Analyze the effectiveness and impact of leadership skills

Assess personal leadership traits

Analyze how leadership traits can be applied to personal leadership philosophies and behaviors

Develop a personal leadership philosophy

Create a development plan related to personal leadership philosophies

Required Readings

Marshall, E., & Broome, M. (2017). Transformational leadership in nursing: From expert clinician to influential leader (2nd ed.). New York, NY: Springer.

Chapter 1, “Expert Clinician to Transformational Leader in a Complex Health Care Organization: Foundations” (pp. 7–20 ONLY)

Chapter 6, “Frameworks for Becoming a Transformational Leader” (pp. 145–170) Walden University Effectiveness and Impact of Leadership Skills Paper

Chapter 7, “Becoming a Leader: It’s All About You” (pp. 171–194)

Duggan, K., Aisaka, K., Tabak, R. G., Smith, C., Erwin, P., & Brownson, R. C. (2015). Implementing administrative evidence-based practices: Lessons from the field in six local health departments across the United States. BMC Health Services Research, 15(1). doi:10.1186/s12913-015-0891-3. Retrieved from https://bmchealthservres.biomedcentral.com/article…

ORDER  A PLAGIARISM FREE PAPER  NOW

Resources for the StrengthsFinder Assessment Tool

Strengths Finder: Gallup. (2018). Retrieved from https://walden.gallup.com

Guidance Document: Student Long Guide

Guidance Document: Short Guide

Required Media

Laureate Education (Producer). (2014). Leadership [Video file]. Baltimore, MD: Author.

Leadership Theories in Practice

A walk through the Business section of any bookstore or a quick Internet search on the topic will reveal a seemingly endless supply of writings on leadership. Formal research literature is also teeming with volumes on the subject.

However, your own observation and experiences may suggest these theories are not always so easily found in practice. Not that the potential isn’t there; current evidence suggests that leadership factors such as emotional intelligence and transformational leadership behaviors, for example, can be highly effective for leading nurses and organizations.

Yet, how well are these theories put to practice? In this Discussion, you will examine formal leadership theories. You will compare these theories to behaviors you have observed firsthand and discuss their effectiveness in impacting your organization.

To Prepare:

Review the Resources and examine the leadership theories and behaviors introduced.

Identify two to three scholarly resources, in addition to this Module’s readings, that evaluate the impact of leadership behaviors in creating healthy work environments.

Reflect on the leadership behaviors presented in the three resources that you selected for review.

ASSIGNMENT 1

WRITE two key insights you had from the scholarly resources you selected. Describe a leader whom you have seen use such behaviors and skills, or a situation where you have seen these behaviors and skills used in practice. Be specific and provide examples. Then, explain to what extent these skills were effective and how their practice impacted the workplace. Walden University Effectiveness and Impact of Leadership Skills Paper

Your Leadership Profile

Do you believe you have the traits to be an effective leader? Perhaps you are already in a supervisory role, but as has been discussed previously, appointment does not guarantee leadership skills.

How can you evaluate your own leadership skills and behaviors? You can start by analyzing your performance in specific areas of leadership. In this Discussion, you will complete Gallup’s StrengthsFinder assessment. This assessment will identify your personal strengths, which have been shown to improve motivation, engagement, and academic self-conference. Through this assessment, you will discover your top five themes—which you can reflect upon and use to leverage your talents for optimal success and examine how the results relate to your leadership traits.

To Prepare:

To take the Assessment, visit the school website Using the Guidance Document Resource(s) for the Strengths Finder assessment, follow the instructions for setting up an account. If the link does not work, please copy and paste the link into your web browser.

Please Note: This Assessment will take roughly 30 minutes to complete.

Once you have completed your assessment, you will receive your “Top 5 Signature Themes of Talent” on your screen.

Click the Download button below Signature Theme Report, and then print and save the report. We also encourage you to select the Apply tab to review action items.

NOTE: Please keep your report. You will need your results for future courses. Technical Issues with Gallup:

Reflect on the results of your Assessment, and consider how the results relate to your leadership traits.

ORDER  A PLAGIARISM FREE PAPER  NOW

ASSIGNMENT 2a

WRITE a brief description of your results from the StrengthsFinder assessment. Then, briefly describe two core values, two strengths, and two characteristics that you would like to strengthen based on the results of your StrengthsFinder assessment. Be specific. Walden University Effectiveness and Impact of Leadership Skills Paper

Personal Leadership Philosophies

Many of us can think of leaders we have come to admire, be they historical figures, pillars of the industry we work in, or leaders we know personally. The leadership of individuals such as Abraham Lincoln and Margaret Thatcher has been studied and discussed repeatedly. However, you may have interacted with leaders you feel demonstrated equally competent leadership without ever having a book written about their approaches.

What makes great leaders great? Every leader is different, of course, but one area of commonality is the leadership philosophy that great leaders develop and practice. A leadership philosophy is basically an attitude held by leaders that acts as a guiding principle for their behavior. While formal theories on leadership continue to evolve over time, great leaders seem to adhere to an overarching philosophy that steers their actions.

What is your leadership philosophy? In this Assignment, you will explore what guides your own leadership.

To Prepare:

Identify two to three scholarly resources, in addition to this Module’s readings, that evaluate the impact of leadership behaviors in creating healthy work environments.

Reflect on the leadership behaviors presented in the three resources that you selected for review.

Reflect on your results of the CliftonStrengths Assessment, and consider how the results relate to your leadership traits.

Assignment 2b (2-3 pages):

Personal Leadership Philosophies

Develop and submit a personal leadership philosophy that reflects what you think are characteristics of a good leader. Use the scholarly resources on leadership you selected to support your philosophy statement. Your personal leadership philosophy should include the following:

A description of your core values

A personal mission/vision statement

An analysis of your CliftonStrengths Assessment summarizing the results of your profile

A description of two key behaviors that you wish to strengthen

A development plan that explains how you plan to improve upon the two key behaviors you selected and an explanation of how you plan to achieve your personal vision. Be specific and provide examples. Walden University Effectiveness and Impact of Leadership Skills Paper

St Thomas University Watson Theory of Human Caring Analysis Paper

St Thomas University Watson Theory of Human Caring Analysis Paper

Description

Analyze and evaluate a middle range theory.  You will select a middle range theory and identify application of nursing theories into clinical practice.

CONTENT REQUIREMENTS:

  1. Components of the theory
    • Discuss the major concepts of the theory
    • Philosophical basis or worldview change, advancing health
  2. Structural aspects of the theory
  3. Identify an area of your practice where this theory could be applicable
    • What question does the theory help to answer?
    • Describe the area of interest in relationship to the theory/theoretical model.
    • Is it appropriate for the practice setting and is it applicable?
    • Discuss the strength and weakness of the theory. If there is weakness, discuss what makes it difficult to be used in practice.

ORDER  A PLAGIARISM FREE PAPER  NOW

  1. Use of theory in clinical practice.
    • Performing a literature review is essential to completing this section. If there is no literature available about the application of this theory in practice, address reason(s) why based on your findings.
  2. Evaluation of theory
    • Is this theory used to understand and apply into practice?
    • What difficulties did you encounter or would anticipate encountering in using this theory?
    • What would make this theory more usable or applicable to practice? St Thomas University Watson Theory of Human Caring Analysis Paper
Explanation & Answer:

3 pages
Tags: middle range theories